
An Introduction to

Binary Search Trees and Balanced Trees
Libavl Binary Search Tree Library

Volume 1: Source Code
Version 2.0.1

by Ben Pfaff

Copyright c© 1998–2002 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program;
if not, write to:

Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307
UNITED STATES

The author may be contacted as blp@gnu.org on the Internet, or write to:
Ben Pfaff
Stanford University
Computer Science Dept.
353 Serra Mall
Stanford CA 94305
UNITED STATES

i

Brief Contents

Preface . 1

1 Introduction. 3

2 The Table ADT . 7

3 Search Algorithms . 19

4 Binary Search Trees . 29

5 AVL Trees . 107

6 Red-Black Trees . 139

7 Threaded Binary Search Trees . 163

8 Threaded AVL Trees . 191

9 Threaded Red-Black Trees . 209

10 Right-Threaded Binary Search Trees 225

11 Right-Threaded AVL Trees . 247

12 Right-Threaded Red-Black Trees 263

13 BSTs with Parent Pointers . 277

14 AVL Trees with Parent Pointers. 293

15 Red-Black Trees with Parent Pointers 307

A References . 321

B Supplementary Code . 323

C Glossary . 331

D Answers to All the Exercises . 335

E Catalogue of Algorithms . 405

F Index . 411

ii GNU libavl 2.0.1

iii

Table of Contents

Preface . 1
Acknowledgements . 1
Contacting the Author . 2

1 Introduction . 3
1.1 Audience . 3
1.2 Reading the Code . 4
1.3 Code Conventions . 6
1.4 License . 6

2 The Table ADT . 7
2.1 Informal Definition . 7
2.2 Identifiers. 8
2.3 Comparison Function . 8
2.4 Item and Copy Functions . 10
2.5 Memory Allocation . 11
2.6 Creation and Destruction . 12
2.7 Count . 13
2.8 Insertion and Deletion . 13
2.9 Assertions . 14
2.10 Traversers . 15

2.10.1 Constructors . 15
2.10.2 Manipulators . 16

2.11 Table Headers . 17
2.12 Additional Exercises . 18

3 Search Algorithms . 19
3.1 Sequential Search . 19
3.2 Sequential Search with Sentinel. 20
3.3 Sequential Search of Ordered Array . 21
3.4 Sequential Search of Ordered Array with Sentinel 22
3.5 Binary Search of Ordered Array . 23
3.6 Binary Search Tree in Array . 25
3.7 Dynamic Lists . 27

iv GNU libavl 2.0.1

4 Binary Search Trees . 29
4.1 Vocabulary . 29

4.1.1 Aside: Differing Definitions . 30
4.2 Data Types . 31

4.2.1 Node Structure . 31
4.2.2 Tree Structure . 32
4.2.3 Maximum Height . 32

4.3 Rotations . 33
4.4 Operations . 34
4.5 Creation . 34
4.6 Search . 35
4.7 Insertion . 35

4.7.1 Aside: Root Insertion . 37
4.8 Deletion . 39

4.8.1 Aside: Deletion by Merging . 42
4.9 Traversal . 45

4.9.1 Traversal by Recursion . 46
4.9.2 Traversal by Iteration . 47

4.9.2.1 Improving Convenience 50
4.9.3 Better Iterative Traversal. 53

4.9.3.1 Starting at the Null Node 55
4.9.3.2 Starting at the First Node 55
4.9.3.3 Starting at the Last Node 56
4.9.3.4 Starting at a Found Node 56
4.9.3.5 Starting at an Inserted Node 57
4.9.3.6 Initialization by Copying 58
4.9.3.7 Advancing to the Next Node 58
4.9.3.8 Backing Up to the Previous Node 60
4.9.3.9 Getting the Current Item 61
4.9.3.10 Replacing the Current Item 61

4.10 Copying . 61
4.10.1 Recursive Copying . 61
4.10.2 Iterative Copying . 63
4.10.3 Error Handling . 64

4.11 Destruction . 67
4.11.1 Destruction by Rotation . 67
4.11.2 Aside: Recursive Destruction 68
4.11.3 Aside: Iterative Destruction 69

4.12 Balance . 70
4.12.1 From Tree to Vine . 72
4.12.2 From Vine to Balanced Tree 73

4.12.2.1 General Trees . 74
4.12.2.2 Implementation . 75
4.12.2.3 Implementing Compression 77

4.13 Aside: Joining BSTs . 78
4.14 Testing . 80

4.14.1 Testing BSTs. 83
4.14.1.1 BST Verification . 88

v

4.14.1.2 Displaying BST Structures. 92
4.14.2 Test Set Generation . 93
4.14.3 Testing Overflow . 94
4.14.4 Memory Manager . 95
4.14.5 User Interaction . 101
4.14.6 Utility Functions . 102
4.14.7 Main Program . 103

4.15 Additional Exercises . 105

5 AVL Trees . 107
5.1 Balancing Rule. 108

5.1.1 Analysis . 109
5.2 Data Types . 109
5.3 Operations . 109
5.4 Insertion . 110

5.4.1 Step 1: Search. 111
5.4.2 Step 2: Insert . 112
5.4.3 Step 3: Update Balance Factors 112
5.4.4 Step 4: Rebalance . 115
5.4.5 Symmetric Case . 118
5.4.6 Example . 118
5.4.7 Aside: Recursive Insertion . 119

5.5 Deletion . 122
5.5.1 Step 1: Search. 122
5.5.2 Step 2: Delete . 123
5.5.3 Step 3: Update Balance Factors 125
5.5.4 Step 4: Rebalance . 127
5.5.5 Step 5: Finish Up . 128
5.5.6 Symmetric Case . 129

5.6 Traversal . 129
5.7 Copying . 133
5.8 Testing . 135

6 Red-Black Trees . 139
6.1 Balancing Rule. 139

6.1.1 Analysis . 141
6.2 Data Types . 141
6.3 Operations . 142
6.4 Insertion . 142

6.4.1 Step 1: Search. 143
6.4.2 Step 2: Insert . 143
6.4.3 Step 3: Rebalance . 143
6.4.4 Symmetric Case . 146
6.4.5 Aside: Initial Black Insertion 147

6.4.5.1 Symmetric Case . 150
6.5 Deletion . 150

6.5.1 Step 2: Delete . 151
6.5.2 Step 3: Rebalance . 154

vi GNU libavl 2.0.1

6.5.3 Step 4: Finish Up . 158
6.5.4 Symmetric Case . 158

6.6 Testing . 159

7 Threaded Binary Search Trees 163
7.1 Threads . 163
7.2 Data Types . 164
7.3 Operations . 165
7.4 Creation . 166
7.5 Search. 166
7.6 Insertion . 167
7.7 Deletion . 168
7.8 Traversal . 173

7.8.1 Starting at the Null Node . 174
7.8.2 Starting at the First Node . 174
7.8.3 Starting at the Last Node . 175
7.8.4 Starting at a Found Node . 175
7.8.5 Starting at an Inserted Node 176
7.8.6 Initialization by Copying . 176
7.8.7 Advancing to the Next Node 176
7.8.8 Backing Up to the Previous Node 177

7.9 Copying . 177
7.10 Destruction . 181
7.11 Balance . 182

7.11.1 From Tree to Vine . 182
7.11.2 From Vine to Balanced Tree 184

7.12 Testing . 186

8 Threaded AVL Trees . 191
8.1 Data Types . 191
8.2 Rotations . 192
8.3 Operations . 193
8.4 Insertion . 193

8.4.1 Steps 1 and 2: Search and Insert 193
8.4.2 Step 4: Rebalance . 194
8.4.3 Symmetric Case . 196

8.5 Deletion . 197
8.5.1 Step 1: Search. 197
8.5.2 Step 2: Delete . 198
8.5.3 Step 3: Update Balance Factors 199
8.5.4 Step 4: Rebalance . 200
8.5.5 Symmetric Case . 202
8.5.6 Finding the Parent of a Node 203

8.6 Copying . 204
8.7 Testing . 205

vii

9 Threaded Red-Black Trees 209
9.1 Data Types . 209
9.2 Operations . 210
9.3 Insertion . 210

9.3.1 Steps 1 and 2: Search and Insert 211
9.3.2 Step 3: Rebalance . 211
9.3.3 Symmetric Case . 213

9.4 Deletion . 214
9.4.1 Step 1: Search. 215
9.4.2 Step 2: Delete . 215
9.4.3 Step 3: Rebalance . 217
9.4.4 Step 4: Finish Up . 220
9.4.5 Symmetric Case . 220

9.5 Testing . 221

10 Right-Threaded Binary Search Trees. 225
10.1 Data Types . 226
10.2 Operations . 226
10.3 Search . 227
10.4 Insertion . 227
10.5 Deletion . 229

10.5.1 Right-Looking Deletion . 230
10.5.2 Left-Looking Deletion . 232
10.5.3 Aside: Comparison of Deletion Algorithms 235

10.6 Traversal . 236
10.6.1 Starting at the First Node. 236
10.6.2 Starting at the Last Node . 237
10.6.3 Starting at a Found Node . 237
10.6.4 Advancing to the Next Node 238
10.6.5 Backing Up to the Previous Node 238

10.7 Copying . 240
10.8 Destruction . 242
10.9 Balance . 243
10.10 Testing . 244

viii GNU libavl 2.0.1

11 Right-Threaded AVL Trees. 247
11.1 Data Types . 247
11.2 Operations . 248
11.3 Rotations . 248
11.4 Insertion . 249

11.4.1 Steps 1–2: Search and Insert 249
11.4.2 Step 4: Rebalance . 250

11.5 Deletion . 253
11.5.1 Step 1: Search . 253
11.5.2 Step 2: Delete . 254
11.5.3 Step 3: Update Balance Factors 256
11.5.4 Step 4: Rebalance . 257

11.6 Copying . 259
11.7 Testing . 260

12 Right-Threaded Red-Black Trees 263
12.1 Data Types . 263
12.2 Operations . 264
12.3 Insertion . 264

12.3.1 Steps 1 and 2: Search and Insert 265
12.3.2 Step 3: Rebalance . 266

12.4 Deletion . 269
12.4.1 Step 2: Delete . 269
12.4.2 Step 3: Rebalance . 271
12.4.3 Step 4: Finish Up . 274

12.5 Testing . 274

13 BSTs with Parent Pointers 277
13.1 Data Types . 278
13.2 Operations . 278
13.3 Insertion . 279
13.4 Deletion . 280
13.5 Traversal . 283

13.5.1 Starting at the First Node. 283
13.5.2 Starting at the Last Node . 283
13.5.3 Starting at a Found Node . 284
13.5.4 Starting at an Inserted Node 284
13.5.5 Advancing to the Next Node 285
13.5.6 Backing Up to the Previous Node 286

13.6 Copying . 287
13.7 Balance . 289
13.8 Testing . 290

ix

14 AVL Trees with Parent Pointers 293
14.1 Data Types . 293
14.2 Rotations . 294
14.3 Operations . 294
14.4 Insertion . 294

14.4.1 Steps 1 and 2: Search and Insert 295
14.4.2 Step 3: Update Balance Factors 295
14.4.3 Step 4: Rebalance . 296
14.4.4 Symmetric Case . 298

14.5 Deletion . 298
14.5.1 Step 2: Delete . 299
14.5.2 Step 3: Update Balance Factors 300
14.5.3 Step 4: Rebalance . 300
14.5.4 Symmetric Case . 301

14.6 Traversal . 302
14.7 Copying . 302
14.8 Testing . 304

15 Red-Black Trees with Parent Pointers . . . 307
15.1 Data Types . 307
15.2 Operations . 308
15.3 Insertion . 308

15.3.1 Step 2: Insert . 308
15.3.2 Step 3: Rebalance . 309
15.3.3 Symmetric Case . 311

15.4 Deletion . 312
15.4.1 Step 2: Delete . 313
15.4.2 Step 3: Rebalance . 314
15.4.3 Step 4: Finish Up . 317
15.4.4 Symmetric Case . 317

15.5 Testing . 318

Appendix A References . 321

Appendix B Supplementary Code 323
B.1 Option Parser . 323
B.2 Command-Line Parser . 326

Appendix C Glossary . 331

x GNU libavl 2.0.1

Appendix D Answers to All the Exercises . . . 335
Chapter 2 . 335
Chapter 3 . 341
Chapter 4 . 351
Chapter 5 . 374
Chapter 6 . 379
Chapter 7 . 381
Chapter 8 . 384
Chapter 9 . 390
Chapter 10 . 397
Chapter 11 . 398
Chapter 13 . 401
Chapter 14 . 402

Appendix E Catalogue of Algorithms 405
Binary Search Tree Algorithms . 405
AVL Tree Algorithms . 406
Red-Black Tree Algorithms . 406
Threaded Binary Search Tree Algorithms . 407
Threaded AVL Tree Algorithms . 407
Threaded Red-Black Tree Algorithms . 407
Right-Threaded Binary Search Tree Algorithms 408
Right-Threaded AVL Tree Algorithms . 408
Right-Threaded Red-Black Tree Algorithms 408
Binary Search Tree with Parent Pointers Algorithms 408
AVL Tree with Parent Pointers Algorithms 409
Red-Black Tree with Parent Pointers Algorithms 409

Appendix F Index . 411

Preface 1

Preface

Early in 1998, I wanted an AVL tree library for use in writing GNU PSPP. At the time,
few of these were available on the Internet. Those that were had licenses that were not
entirely satisfactory for inclusion in GNU software. I resolved to write my own. I sat down
with Knuth’s The Art of Computer Programming and did so. The result was the earliest
version of Libavl. As I wrote it, I learned valuable lessons about implementing algorithms
for binary search trees, and covered many notebook pages with scribbled diagrams.

Later, I decided that what I really wanted was a similar library for threaded AVL trees,
so I added an implementation to Libavl. Along the way, I ended up having to relearn
many of the lessons I’d already painstakingly uncovered in my earlier work. Even later, I
had much the same experience in writing code for right-threaded AVL trees and red-black
trees, which was done as much for my own education as any intention of using the code in
real software.

In late 1999, I contributed a chapter on binary search trees and balanced trees to a
book on programming in C. This again required a good deal of duplication of effort as I
rediscovered old techniques. By now I was beginning to see the pattern, so I decided to
document once and for all the algorithms I had chosen and the tradeoffs I had made. Along
the way, the project expanded in scope several times.

You are looking at the results. I hope you find that it is as useful for reading and reference
as I found that writing it was enjoyable for me. As I wrote later chapters, I referred less
and less to my other reference books and more and more to my own earlier chapters, so
I already know that it can come in handy for me. (On the other hand, GNU PSPP, the
program that started off the whole saga, has been long neglected and development may
never resume. It would need to be rewritten from the top anyhow.)

Please feel free to copy and distribute this book, in accordance with the license agree-
ment. If you make multiple printed copies, consider contacting me by email first to check
whether there are any late-breaking corrections or new editions in the pipeline.

Acknowledgements

Libavl has grown into its current state over a period of years. During that time,
many people have contributed advice, bug reports, and occasional code fragments. I have
attempted to individually acknowledge all of these people, along with their contributions,
in the ‘NEWS’ and ‘ChangeLog’ files included with the Libavl source distribution. Without
their help, Libavl would not be what it is today. If you believe that you should be listed
in one of these files, but are not, please contact me.

Many people have indirectly contributed by providing computer science background and
software infrastructure, without which Libavl would not have been possible at all. For a
partial list, please see ‘THANKS’ in the Libavl source distribution.

Special thanks are due to Erik Goodman of the A. H. Case Center for Computer-Aided
Engineering and Manufacturing at Michigan State University for making it possible for me
to receive MSU honors credit for rewriting Libavl as a literate program, and to Dann
Corbit for his invaluable suggestions during development.

2 GNU libavl 2.0.1

Contacting the Author

Libavl, including this book, the source code, the TexiWEB software, and related pro-
grams, was written by Ben Pfaff, who welcomes your feedback. Please send Libavl-
related correspondence, including bug reports and suggestions for improvement, to him
at blp@gnu.org.

Ben received his B.S. in electrical engineering from Michigan State University in May
2001. He is now studying for a Ph.D. in computer science at Stanford University as a
Stanford Graduate Fellow.

Ben’s personal webpage is at http://benpfaff.org/, where you can find a list of his
current projects, including the status of Libavl test releases. You can also find him hanging
out in the Internet newsgroup comp.lang.c.

Chapter 1: Introduction 3

1 Introduction

Libavl is a library in ANSI C for manipulation of various types of binary trees. This
book provides an introduction to binary tree techniques and presents all of Libavl’s source
code, along with annotations and exercises for the reader. It also includes practical infor-
mation on how to use Libavl in your programs and discussion of the larger issues of how
to choose efficient data structures and libraries. The book concludes with suggestions for
further reading, answers to all the exercises, glossary, and index.

1.1 Audience

This book is intended both for novices interested in finding out about binary search trees
and practicing programmers looking for a cookbook of algorithms. It has several features
that will be appreciated by both groups:
• Tested code: With the exception of code presented as counterexamples, which are

clearly marked, all code presented has been tested. Most code comes with a working
program for testing or demonstrating it.

• No pseudo-code: Pseudo-code can be confusing, so it is not used.
• Motivation: An important goal is to demonstrate general methods for programming,

not just the particular algorithms being examined. As a result, the rationale for design
choices is explained carefully.

• Exercises and answers: To clarify issues raised within the text, many sections conclude
with exercises. All exercises come with complete answers in an appendix at the back
of the book.
Some exercises are marked with one or more stars (*). Exercises without stars are
recommended for all readers, but starred exercises deal with particularly obscure topics
or make reference to topics covered later.
Experienced programmers should find the exercises particularly interesting, because
many of them present alternatives to choices made in the main text.

• Asides: Occasionally a section is marked as an “aside”. Like exercises, asides often
highlight alternatives to techniques in the main text, but asides are more extensive
than most exercises. Asides are not essential to comprehension of the main text, so
readers not interested may safely skip over them to the following section.

• Minimal C knowledge assumed : Basic familiarity with the C language is assumed, but
obscure constructions are briefly explained the first time they occur.
Those who wish for a review of C language features before beginning should consult
[Summit 1999]. This is especially recommended for novices who feel uncomfortable
with pointer and array concepts.

• References: When appropriate, other texts that cover the same or related material are
referenced at the end of sections.

• Glossary : Terms are emphasized and defined the first time they are used. Definitions
for these terms and more are collected into a glossary at the back of the book.

• Catalogue of algorithms: See Appendix E [Catalogue of Algorithms], page 405, for a
handy list of all the algorithms implemented in this book.

4 GNU libavl 2.0.1

1.2 Reading the Code

This book contains all the source code to Libavl. Conversely, much of the source code
presented in this book is part of Libavl.

Libavl is written in ANSI/ISO C89 using TexiWEB, a literate programming system.
Literate programming is a philosophy that regards software as a kind of literature. The
ideas behind literate programming have been around for a long time, but the term itself was
invented by computer scientist Donald Knuth in 1984, who wrote two of his most famous
programs (TEX and METAFONT) with a literate programming system of his own design.
That system, called WEB, inspired the form and much of the syntax of TexiWEB.

A TexiWEB document is a C program that has been cut into sections, rearranged, and
annotated, with the goal to make the program as a whole as comprehensible as possible
to a reader who starts at the beginning and reads the entire program in order. Of course,
understanding large, complex programs cannot be trivial, but TexiWEB tries to make it as
easy as possible.

Each section of a TexiWEB program is assigned both a number and a name. Section
numbers are assigned sequentially, starting from 1 with the first section, and they are used
for cross-references between sections. Section names are words or phrases assigned by the
TexiWEB program’s author to describe the role of the section’s code.

Here’s a sample TexiWEB section:

§19 〈Clear hash table entries 19 〉 ≡
for (i = 0; i < hash→m; i++)

hash→entry [i] = NULL;

This code is included in §15.

The first line of a section, as shown here, gives the section’s name and its number within
angle brackets. The section number is also printed in the left margin to make individual
sections easy to find. Looking farther down, at the code itself, the C operator -> has been
replaced by the nicer-looking arrow →. TexiWEB makes an attempt to “prettify” C in a
few ways like this. The table below lists most of these substitutions:

-> becomes →
0x12ab becomes 0x12ab
0377 becomes 0377
1.2e34 becomes 1.2·1034

In addition, − and + are written as superscripts when used to indicate sign, as in −5 or
+10.

In TexiWEB, C’s reserved words are shown like this: int, struct, while. . . . Types defined
with typedef or with struct, union, and enum tags are shown the same way. Identifiers in
all capital letters (often names of macros) are shown like this: BUFSIZ, EOF, ERANGE. . . .
Other identifiers are shown like this: getc, argv , strlen

Sometimes it is desirable to talk about mathematical expressions, as opposed to C expres-
sions. When this is done, mathematical operators (≤, ≥) instead of C operators (<=, >=)
are used. In particular, mathematical equality is indicated with ≡ instead of = in order to
minimize potential confusion.

Chapter 1: Introduction 5

Code segments often contain references to other code segments, shown as a section name
and number within angle brackets. These act something like macros, in that they stand for
the corresponding replacement text. For instance, consider the following segment:

§15 〈 Initialize hash table 15 〉 ≡
hash→m = 13;
〈Clear hash table entries 19 〉
See also §16.

This means that the code for ‘Clear hash table entries’ should be inserted as part of
‘Initialize hash table’. Because the name of a section explains what it does, it’s often
unnecessary to know anything more. If you do want more detail, the section number 19 in
〈Clear hash table entries 19 〉 can easily be used to find the full text and annotations for
‘Clear hash table entries’. At the bottom of section 19 you will find a note reading ‘This

code is included in §15.’, making it easy to move back to section 15 that includes it.

There’s also a note following the code in the section above: ‘See also §16.’. This demon-
strates how TexiWEB handles multiple sections that have the same name. When a name
that corresponds to multiple sections is referenced, code from all the sections with that
name is substituted, in order of appearance. The first section with the name ends with a
note listing the numbers of all other same-named sections. Later sections show their own
numbers in the left margin, but the number of the first section within angle brackets, to
make the first section easy to find. For example, here’s another line of code for 〈Clear hash
table entries 15 〉:

§16 〈 Initialize hash table 15 〉 +≡
hash→n = 0;

Code segment references have one more feature: the ability to do special macro replace-
ments within the referenced code. These replacements are made on all words within the
code segment referenced and recursively within code segments that the segment references,
and so on. Word prefixes as well as full words are replaced, as are even occurrences within
comments in the referenced code. Replacements take place regardless of case, and the case
of the replacement mirrors the case of the replaced text. This odd feature is useful for
adapting a section of code written for one library having a particular identifier prefix for
use in a different library with another identifier prefix. For instance, the reference ‘〈BST
types; bst ⇒ avl 〉’ inserts the contents of the segment named ‘BST types’, replacing ‘bst’
by ‘avl’ wherever the former appears at the beginning of a word.

When a TexiWEB program is converted to C, conversion conceptually begins from sec-
tions named for files; e.g., 〈 ‘foo.c’ 37 〉. Within these sections, all section references are
expanded, then references within those sections are expanded, and so on. When expansion
is complete, the specified files are written out.

A final resource in reading a TexiWEB is the index, which contains an entry for the points
of declaration of every section name, function, type, structure, union, global variable, and
macro. Declarations within functions are not indexed.

See also: [Knuth 1992], “How to read a WEB”.

6 GNU libavl 2.0.1

1.3 Code Conventions

Where possible, the Libavl source code complies to the requirements imposed by
ANSI/ISO C89 and C99. Features present only in C99 are not used. In addition, most of
the GNU Coding Standards are followed. Indentation style is an exception to the latter:
in print, to conserve vertical space, K&R indentation style is used instead of GNU style.
See also: [ISO 1990]; [ISO 1999]; [FSF 2001], “Writing C”.

1.4 License

This book, including the code in it, is subject to the following license:
§1 〈License 1 〉 ≡

/∗ GNU Libavl - library for manipulation of binary trees.
Copyright c© 1998–2002 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.
The author may be contacted at <blp@gnu.org> on the Internet, or
write to Ben Pfaff, Stanford University, Computer Science Dept., 353
Serra Mall, Stanford CA 94305, USA.
∗/

This code is included in §24, §25, §97, §98, §99, §142, §143, §186, §192, §193, §238, §247, §248, §290, §297,

§298, §330, §333, §334, §368, §372, §373, §411, §415, §416, §449, §452, §453, §482, §486, §487, §515, §519,

§520, §548, §551, §552, §583, §595, §599, §617, and §649.

Chapter 2: The Table ADT 7

2 The Table ADT

Most of the chapters in this book implement a table structure as some kind of binary
tree, so it is important to understand what a table is before we begin. That is this chapter’s
purpose.

This chapter begins with a brief definition of the meaning of “table” for the purposes
of this book, then moves on to describe in a more formal way the interface of a table used
by all of the tables in this book. The next chapter motivates the basic idea of a binary
tree starting from simple, everyday concepts. Experienced programmers may skip these
chapters after skimming through the definitions below.

2.1 Informal Definition

If you’ve written even a few programs, you’ve probably noticed the necessity for search-
able collections of data. Compilers search their symbol tables for identifiers and network
servers often search tables to match up data with users. Many applications with graphical
user interfaces deal with mouse and keyboard activity by searching a table of possible ac-
tions. In fact, just about every nontrivial program, regardless of application domain, needs
to maintain and search tables of some kind.

In this book, the term “table” does not refer to any particular data structure. Rather,
it is the name for a abstract data structure or ADT, defined in terms of the operations that
can be performed on it. A table ADT can be implemented in any number of ways. Later
chapters will show how to implement tables in terms of various binary tree data structures.

The purpose of a table is to keep track of a collection of items, all of the same type.
Items can be inserted into and deleted from a table, with no arbitrary limit on the number
of items in the table. We can also search a table for items that match a given item.

Other operations are supported, too. Traversal is the most important of these: all of
the items in a table can be visited, in sorted order from smallest to largest, or from largest
to smallest. Traversals can also start from an item in the middle, or a newly inserted item,
and move in either direction.

The data in a table may be of any C type, but all the items in a table must be of the
same type. Structure types are common. Often, only part of each data item is used in item
lookup, with the rest for storage of auxiliary information. A table that contains two-part
data items like this is called a “dictionary” or an “associative array”. The part of table
data used for lookup, whether the table is a dictionary or not, is the key. In a dictionary,
the remainder is the value.

Our tables cannot contain duplicates. An attempt to insert an item into a table that
already contains a matching item will fail.

Exercises:

1. Suggest a way to simulate the ability to insert duplicate items in a table.

8 GNU libavl 2.0.1

2.2 Identifiers

In C programming it is necessary to be careful if we expect to avoid clashes between
our own names and those used by others. Any identifiers that we pick might also be used
by others. The usual solution is to adopt a prefix that is applied to the beginning of
every identifier that can be visible in code outside a single source file. In particular, most
identifiers in a library’s public header files must be prefixed.

Libavl is a collection of mostly independent modules, each of which implements the
table ADT. Each module has its own, different identifier prefix. Identifiers that begin with
this prefix are reserved for any use in source files that #include the module header file. Also
reserved (for use as macro names) are identifiers that begin with the all-uppercase version
of the prefix. Both sets of identifiers are also reserved as external names1 throughout any
program that uses the module.

In addition, all identifiers that begin with libavl or LIBAVL_ are reserved for any use in
source files that #include any Libavl module. Likewise, these identifiers are reserved as
external names in any program that uses any Libavl module. This is primarily to allow
for future expansion, but see Section 2.5 [Memory Allocation], page 11 and Exercise 2.5-1
for a sample use.

The prefix used in code samples in this chapter is tbl , short for “table”. This can be
considered a generic substitute for the prefix used by any of the table implementation. All of
the statements about these functions here apply equally to all of the table implementation
in later chapters, except that the tbl prefix must be replaced by the prefix used by the
chapter’s table implementation.

Exercises:

1. The following kinds of identifiers are among those that might appear in a header file.
Which of them can be safely appear unprefixed? Why?
a. Parameter names within function prototypes.
b. Macro parameter names.
c. Structure and union tags.
d. Structure and union member names.

2. Suppose that we create a module for reporting errors. Why is err a poorly chosen prefix
for the module’s identifiers?

2.3 Comparison Function

The C language provides the void ∗ generic pointer for dealing with data of unknown
type. We will use this type to allow our tables to contain a wide range of data types. This
flexibility does keep the table from working directly with its data. Instead, the table’s user
must provide means to operate on data items. This section describes the user-provided
functions for comparing items, and the next section describes two other kinds of user-
provided functions.

1 External names are identifiers visible outside a single source file. These are, mainly, non-static functions
and variables declared outside a function.

Chapter 2: The Table ADT 9

There is more than one kind of generic algorithm for searching. We can search by
comparison of keys, by digital properties of the keys, or by computing a function of the keys.
In this book, we are only interested in the first possibility, so we need a way to compare
data items. This is done with a user-provided function compatible with tbl comparison func,
declared as follows:

§2 〈Table function types 2 〉 ≡
/∗ Function types. ∗/
typedef int tbl comparison func (const void ∗tbl a, const void ∗tbl b, void ∗tbl param);
See also §4.

This code is included in §14.

A comparison function takes two pointers to data items, here called a and b, and com-
pares their keys. It returns a negative value if a < b, zero if a == b, or a positive value if
a > b. It takes a third parameter, here called param, which is user-provided.

A comparison function must work more or less like an arithmetic comparison within the
domain of the data. This could be alphabetical ordering for strings, a set of nested sort
orders (e.g., sort first by last name, with duplicates by first name), or any other comparison
function that behaves in a “natural” way. A comparison function in the exact class of
those acceptable is called a strict weak ordering, for which the exact rules are explained in
Exercise 5.

Here’s a function that can be used as a comparison function for the case that the void ∗
pointers point to single ints:

§3 〈Comparison function for ints 3 〉 ≡
/∗ Comparison function for pointers to ints. param is not used. ∗/
int compare ints (const void ∗pa, const void ∗pb, void ∗param) {

const int ∗a = pa;
const int ∗b = pb;
if (∗a < ∗b) return −1;
else if (∗a > ∗b) return +1;
else return 0;

}
This code is included in §134.

Here’s another comparison function for data items that point to ordinary C strings:
/∗ Comparison function for strings. param is not used. ∗/
int compare strings (const void ∗pa, const void ∗pb, void ∗param) {

return strcmp (pa, pb);
}
See also: [FSF 1999], node “Defining the Comparison Function”; [ISO 1998], section 25.3,
“Sorting and related operations”; [SGI 1993], section “Strict Weak Ordering”.

Exercises:

1. In C, integers may be cast to pointers, including void ∗, and vice versa. Explain why
it is not a good idea to use an integer cast to void ∗ as a data item. When would such a
technique would be acceptable?

2. When would the following be an acceptable alternate definition for compare ints()?

10 GNU libavl 2.0.1

int compare ints (const void ∗pa, const void ∗pb, void ∗param) {
return ∗((int ∗) pa) − ∗((int ∗) pb);

}
3. Could strcmp(), suitably cast, be used in place of compare strings()?

4. Write a comparison function for data items that, in any particular table, are character
arrays of fixed length. Among different tables, the length may differ, so the third parameter
to the function points to a size t specifying the length for a given table.

*5. For a comparison function f () to be a strict weak ordering, the following must hold for
all possible data items a, b, and c:
• Irreflexivity: For every a, f (a, a) == 0.
• Antisymmetry : If f (a, b) > 0, then f (b, a) < 0.
• Transitivity : If f (a, b) > 0 and f (b, c) > 0, then f (a, c) > 0.
• Transitivity of equivalence: If f (a, b) == 0 and f (b, c) == 0, then f (a, c) == 0.

Consider the following questions that explore the definition of a strict weak ordering.
a. Explain how compare ints() above satisfies each point of the definition.
b. Can the standard C library function strcmp() be used for a strict weak ordering?
c. Propose an irreflexive, antisymmetric, transitive function that lacks transitivity of

equivalence.

*6. Libavl uses a ternary comparison function that returns a negative value for <, zero for
≡ , positive for >. Other libraries use binary comparison functions that return nonzero for
< or zero for ≥. Consider these questions about the differences:
a. Write a C expression, in terms of a binary comparison function f () and two items a and

b, that is nonzero if and only if a == b as defined by f (). Write a similar expression
for a > b.

b. Write a binary comparison function “wrapper” for a Libavl comparison function.
c. Rewrite bst find() based on a binary comparison function. (You can use the wrapper

from above to simulate a binary comparison function.)

2.4 Item and Copy Functions

Besides tbl comparison func, there are two kinds of functions used in Libavl to manip-
ulate item data:

§4 〈Table function types 2 〉 +≡
typedef void tbl item func (void ∗tbl item, void ∗tbl param);
typedef void ∗tbl copy func (void ∗tbl item, void ∗tbl param);
Both of these function types receive a table item as their first argument tbl item and the
tbl param associated with the table as their second argument. This tbl param is the same
one passed as the third argument to tbl comparison func. Libavl will never pass a null
pointer as tbl item to either kind of function.

A tbl item func performs some kind of action on tbl item. The particular action that
it should perform depends on the context in which it is used and the needs of the calling
program.

Chapter 2: The Table ADT 11

A tbl copy func creates and returns a new copy of tbl item. If copying fails, then it
returns a null pointer.

2.5 Memory Allocation

The standard C library functions malloc() and free() are the usual way to obtain and
release memory for dynamic data structures like tables. Most users will be satisfied if
Libavl uses these routines for memory management. On the other hand, some users will
want to supply their own methods for allocating and freeing memory, perhaps even different
methods from table to table. For these users’ benefit, each table is associated with a memory
allocator, which provides functions for memory allocation and deallocation. This allocator
has the same form in each table implementation. It looks like this:

§5 〈Memory allocator 5 〉 ≡
#ifndef LIBAVL_ALLOCATOR
#define LIBAVL_ALLOCATOR
/∗ Memory allocator. ∗/
struct libavl allocator {

void ∗(∗libavl malloc) (struct libavl allocator ∗, size t libavl size);
void (∗libavl free) (struct libavl allocator ∗, void ∗libavl block);

};
#endif

This code is included in §14, §99, and §649.

Members of struct libavl allocator have the same interfaces as the like-named stan-
dard C library functions, except that they are each additionally passed a pointer to the
struct libavl allocator ∗ itself as their first argument. The table implementations never call
tbl malloc() with a zero size or tbl free() with a null pointer block.

The struct libavl allocator type is shared between all of Libavl’s modules, so its name
begins with libavl , not with the specific module prefix that we’ve been representing generi-
cally here as tbl . This makes it possible for a program to use a single allocator with multiple
Libavl table modules, without the need to declare instances of different structures.

The default allocator is just a wrapper around malloc() and free(). Here it is:
§6 〈Default memory allocation functions 6 〉 ≡

/∗ Allocates size bytes of space using malloc(). Returns a null pointer if allocation fails. ∗/
void ∗tbl malloc (struct libavl allocator ∗allocator , size t size) {

assert (allocator != NULL && size > 0);
return malloc (size);

}
/∗ Frees block . ∗/
void tbl free (struct libavl allocator ∗allocator , void ∗block) {

assert (allocator != NULL && block != NULL);
free (block);

}
/∗ Default memory allocator that uses malloc() and free(). ∗/
struct libavl allocator tbl allocator default = {tbl malloc, tbl free};
This code is included in §29, §145, §196, §251, §300, §336, §375, §418, §455, §489, §522, §554, and §649.

12 GNU libavl 2.0.1

The default allocator comes along with header file declarations:
§7 〈Default memory allocator header 7 〉 ≡

/∗ Default memory allocator. ∗/
extern struct libavl allocator tbl allocator default ;
void ∗tbl malloc (struct libavl allocator ∗, size t);
void tbl free (struct libavl allocator ∗, void ∗);
This code is included in §14 and §649.

See also: [FSF 1999], nodes “Malloc Examples” and “Changing Block Size”.

Exercises:

1. This structure is named with a libavl prefix because it is shared among all of Libavl’s
module. Other types are shared among Libavl modules, too, such as tbl item func. Why
don’t the names of these other types also begin with libavl ?

2. Supply an alternate allocator, still using malloc() and free(), that prints an error message
to stderr and aborts program execution when memory allocation fails.

*3. Some kinds of allocators may need additional arguments. For instance, if memory for
each table is taken from a separate Apache-style “memory pool”, then a pointer to the pool
structure is needed. Show how this can be done without modifying existing types.

2.6 Creation and Destruction

This section describes the functions that create and destroy tables.
§8 〈Table creation function prototypes 8 〉 ≡

/∗ Table functions. ∗/
struct tbl table ∗tbl create (tbl comparison func ∗, void ∗, struct libavl allocator ∗);
struct tbl table ∗tbl copy (const struct tbl table ∗, tbl copy func ∗,

tbl item func ∗, struct libavl allocator ∗);
void tbl destroy (struct tbl table ∗, tbl item func ∗);
This code is included in §15.

• tbl create(): Creates and returns a new, empty table as a struct tbl table ∗. The table
is associated with the given arguments. The void ∗ argument is passed as the third
argument to the comparison function when it is called. If the allocator is a null pointer,
then tbl allocator default is used.

• tbl destroy(): Destroys a table. During destruction, the tbl item func provided, if non-
null, is called once for every item in the table, in no particular order. The function, if
provided, must not invoke any table function or macro on the table being destroyed.

• tbl copy(): Creates and returns a new table with the same contents as the existing
table passed as its first argument. Its other three arguments may all be null pointers.
If a tbl copy func is provided, then it is used to make a copy of each table item as it is
inserted into the new table, in no particular order (a deep copy). Otherwise, the void ∗
table items are copied verbatim (a shallow copy).
If the table copy fails, either due to memory allocation failure or a null pointer returned
by the tbl copy func, tbl copy() returns a null pointer. In this case, any provided
tbl item func is called once for each new item already copied, in no particular order.

Chapter 2: The Table ADT 13

By default, the new table uses the same memory allocator as the existing one. If non-
null, the struct libavl allocator ∗ given is used instead as the new memory allocator.
To use the tbl allocator default allocator, specify &tbl allocator default explicitly.

2.7 Count

This function returns the number of items currently in a table.
§9 〈Table count function prototype 9 〉 ≡

size t tbl count (const struct tbl table ∗);
The actual tables instead use a macro for implementation.

Exercises:

1. Implement tbl count() as a macro, on the assumption that struct tbl table keeps the
number of items in the table in a size t member named tbl count .

2.8 Insertion and Deletion

These functions insert and delete items in tables. There is also a function for searching
a table without modifying it.

The design behind the insertion functions takes into account a couple of important issues:
• What should happen if there is a matching item already in the tree? If the items

contain only keys and no values, then there’s no point in doing anything. If the items
do contain values, then we might want to leave the existing item or replace it, depending
on the particular circumstances. The tbl insert() and tbl replace() functions are handy
in simple cases like these.

• Occasionally it is convenient to insert one item into a table, then immediately replace
it by a different item that has identical key data. For instance, if there is a good chance
that a data item already exists within a table, then it might make sense to insert data
allocated as a local variable into a table, then replace it by a dynamically allocated
copy if it turned out that the item wasn’t already in the table. That way, we save the
time required to make an additional copy of the item to insert. The tbl probe() function
allows for this kind of flexibility.

§10 〈Table insertion and deletion function prototypes 10 〉 ≡
void ∗∗tbl probe (struct tbl table ∗, void ∗);
void ∗tbl insert (struct tbl table ∗, void ∗);
void ∗tbl replace (struct tbl table ∗, void ∗);
void ∗tbl delete (struct tbl table ∗, const void ∗);
void ∗tbl find (const struct tbl table ∗, const void ∗);
This code is included in §15.

Each of these functions takes a table to manipulate as its first argument and a table item
as its second argument, here called table and item, respectively. Both arguments must be
non-null in all cases. All but tbl probe() return a table item or a null pointer.
• tbl probe(): Searches in table for an item matching item. If found, a pointer to the

void ∗ data item is returned. Otherwise, item is inserted into the table and a pointer

14 GNU libavl 2.0.1

to the copy within the table is returned. Memory allocation failure causes a null pointer
to be returned.
The pointer returned can be used to replace the item found or inserted by a different
item. This must only be done if the replacement item has the same position relative
to the other items in the table as did the original item. That is, for existing item
e, replacement item r , and the table’s comparison function f (), the return values of
f (e, x) and f (r , x) must have the same sign for every other item x currently in the
table. Calling any other table function invalidates the pointer returned and it must
not be referenced subsequently.

• tbl insert(): Inserts item into table, but not if a matching item exists. Returns a null
pointer if successful or if a memory allocation error occurs. If a matching item already
exists in the table, returns that item.

• tbl replace(): Inserts item into table, replacing and returning any matching item. Re-
turns a null pointer if the item was inserted but there was no matching item to replace,
or if a memory allocation error occurs.

• tbl delete(): Removes from table and returns an item matching item. Returns a null
pointer if no matching item exists in the table.

• tbl find(): Searches table for an item matching item and returns any item found. Re-
turns a null pointer if no matching item exists in the table.

Exercises:

1. Functions tbl insert() and tbl replace() return NULL in two very different situations: an
error or successful insertion. Why is this not necessarily a design mistake?

2. Suggest a reason for disallowing insertion of a null item.

3. Write generic implementations of tbl insert() and tbl replace() in terms of tbl probe().

2.9 Assertions

Sometimes an insertion or deletion must succeed because it is known in advance that
there is no way that it can fail. For instance, we might be inserting into a table from a list
of items known to be unique, using a memory allocator that cannot return a null pointer.
In this case, we want to make sure that the operation succeeded, and abort if not, because
that indicates a program bug. We also would like to be able to turn off these tests for
success in our production versions, because we don’t want them slowing down the code.

§11 〈Table assertion function prototypes 11 〉 ≡
void tbl assert insert (struct tbl table ∗, void ∗);
void ∗tbl assert delete (struct tbl table ∗, void ∗);
This code is included in §15.

These functions provide assertions for tbl insert() and tbl delete(). They expand, via
macros, directly into calls to those functions when NDEBUG, the same symbol used to turn
off assert() checks, is declared. As for the standard C header 〈 assert.h 〉, header files for
tables may be included multiple times in order to turn these assertions on or off.

Exercises:

Chapter 2: The Table ADT 15

1. Write a set of preprocessor directives for a table header file that implement the behavior
described in the final paragraph above.

2. Write a generic implementation of tbl assert insert() and tbl assert delete() in terms of
existing table functions. Consider the base functions carefully. Why must we make sure
that assertions are always enabled for these functions?

3. Why must tbl assert insert() not be used if the table’s memory allocator can fail? (See
also Exercise 2.8-1.)

2.10 Traversers

A struct tbl traverser is a table “traverser” that allows the items in a table to be exam-
ined. With a traverser, the items within a table can be enumerated in sorted ascending or
descending order, starting from either end or from somewhere in the middle.

The user of the traverser declares its own instance of struct tbl traverser, typically as a
local variable. One of the traverser constructor functions described below can be used to
initialize it. Until then, the traverser is invalid. An invalid traverser must not be passed to
any traverser function other than a constructor.

Seen from the viewpoint of a table user, a traverser has only one attribute: the current
item. The current item is either an item in the table or the “null item”, represented by a
null pointer and not associated with any item.

Traversers continue to work when their tables are modified. Any number of insertions and
deletions may occur in the table without affecting the current item selected by a traverser,
with only a few exceptions:
• Deleting a traverser’s current item from its table invalidates the traverser (even if the

item is later re-inserted).
• Using the return value of tbl probe() to replace an item in the table invalidates all

traversers with that item current, unless the replacement item has the same key data
as the original item (that is, the table’s comparison function returns 0 when the two
items are compared).

• Similarly, tbl t replace() invalidates all other traversers with the same item selected,
unless the replacement item has the same key data.

• Destroying a table with tbl destroy() invalidates all of that table’s traversers.

There is no need to destroy a traverser that is no longer needed. An unneeded traverser
can simply be abandoned.

2.10.1 Constructors

These functions initialize traversers. A traverser must be initialized with one of these
functions before it is passed to any other traverser function.

§12 〈Traverser constructor function prototypes 12 〉 ≡
/∗ Table traverser functions. ∗/
void tbl t init (struct tbl traverser ∗, struct tbl table ∗);
void ∗tbl t first (struct tbl traverser ∗, struct tbl table ∗);
void ∗tbl t last (struct tbl traverser ∗, struct tbl table ∗);

16 GNU libavl 2.0.1

void ∗tbl t find (struct tbl traverser ∗, struct tbl table ∗, void ∗);
void ∗tbl t insert (struct tbl traverser ∗, struct tbl table ∗, void ∗);
void ∗tbl t copy (struct tbl traverser ∗, const struct tbl traverser ∗);
This code is included in §15.

All of these functions take a traverser to initialize as their first argument, and most take a
table to associate the traverser with as their second argument. These arguments are here
called trav and table. All, except tbl t init(), return the item to which trav is initialized,
using a null pointer to represent the null item. None of the arguments to these functions
may ever be a null pointer.
• tbl t init(): Initializes trav to the null item in table.
• tbl t first(): Initializes trav to the least-valued item in table. If the table is empty, then

trav is initialized to the null item.
• tbl t last(): Same as tbl t first(), for the greatest-valued item in table.
• tbl t find(): Searches table for an item matching the one given. If one is found, initializes

trav with it. If none is found, initializes trav to the null item.
• tbl t insert(): Attempts to insert the given item into table. If it is inserted succesfully,

trav is initialized to its location. If it cannot be inserted because of a duplicate, the
duplicate item is set as trav ’s current item. If there is a memory allocation error, trav
is initialized to the null item.

• tbl t copy(): Initializes trav to the same table and item as a second valid traverser.
Both arguments pointing to the same valid traverser is valid and causes no change in
either.

2.10.2 Manipulators

These functions manipulate valid traversers.
§13 〈Traverser manipulator function prototypes 13 〉 ≡

void ∗tbl t next (struct tbl traverser ∗);
void ∗tbl t prev (struct tbl traverser ∗);
void ∗tbl t cur (struct tbl traverser ∗);
void ∗tbl t replace (struct tbl traverser ∗, void ∗);
This code is included in §15.

Each of these functions takes a valid traverser, here called trav , as its first argument, and
returns a data item. All but tbl t replace() can also return a null pointer that represents
the null item. All arguments to these functions must be non-null pointers.
• tbl t next(): Advances trav to the next larger item in its table. If trav was at the null

item in a nonempty table, then the smallest item in the table becomes current. If trav
was already at the greatest item in its table or the table is empty, the null item becomes
current. Returns the new current item.

• tbl t prev(): Advances trav to the next smaller item in its table. If trav was at the null
item in a nonempty table, then the greatest item in the table becomes current. If trav
was already at the lowest item in the table or the table is empty, the null item becomes
current. Returns the new current item.

• tbl t cur(): Returns trav ’s current item.

Chapter 2: The Table ADT 17

• tbl t replace(): Replaces the data item currently selected in trav by the one provided.
The replacement item is subject to the same restrictions as for the same replacement
using tbl probe(). The item replaced is returned. If the null item is current, the behavior
is undefined.

Seen from the outside, the traverser treats the table as a circular arrangement of items:

1

2

3

4

5
6

7

8

9

10

11
NULL

Moving clockwise in the circle is equivalent, under our traverser, to moving to the next item
with tbl t next(). Moving counterclockwise is equivalent to moving to the previous item
with tbl t prev().

An equivalent view is that the traverser treats the table as a linear arrangement of nodes:

1 2 3 4 5 6 7 8

NULL

From this perspective, nodes are arranged from least to greatest in left to right order, and
the null node lies in the middle as a connection between the least and greatest nodes.
Moving to the next node is the same as moving to the right and moving to the previous
node is motion to the left, except where the null node is concerned.

2.11 Table Headers

Here we gather together in one place all of the types and prototypes for a generic table.
§14 〈Table types 14 〉 ≡

〈Table function types 2 〉
〈Memory allocator 5 〉
〈Default memory allocator header 7 〉
This code is included in §24, §142, §192, §247, §297, §333, §372, §415, §452, §486, §519, and §551.

§15 〈Table function prototypes 15 〉 ≡
〈Table creation function prototypes 8 〉
〈Table insertion and deletion function prototypes 10 〉
〈Table assertion function prototypes 11 〉
〈Table count macro 591 〉
〈Traverser constructor function prototypes 12 〉
〈Traverser manipulator function prototypes 13 〉

18 GNU libavl 2.0.1

This code is included in §24, §142, §192, §247, §297, §333, §372, §415, §452, §486, §519, and §551.

All of our tables fit the specification given in Exercise 2.7-1, so 〈Table count macro 591 〉 is
directly included above.

2.12 Additional Exercises

Exercises:

*1. Compare and contrast the design of Libavl’s tables with that of the set container in
the C++ Standard Template Library.

2. What is the smallest set of table routines such that all of the other routines can be
implemented in terms of the interfaces of that set as defined above?

Chapter 3: Search Algorithms 19

3 Search Algorithms

In Libavl, we are primarily concerned with binary search trees and balanced binary
trees. If you’re already familiar with these concepts, then you can move right into the code,
starting from the next chapter. But if you’re not, then a little motivation and an explanation
of exactly what a binary search tree is can’t hurt. That’s the goal of this chapter.

More particularly, this chapter concerns itself with algorithms for searching. Searching
is one of the core problems in organizing a table. As it will turn out, arranging a table for
fast searching also facilitates some other table features.

3.1 Sequential Search

Suppose that you have a bunch of things (books, magazines, CDs, . . .) in a pile, and
you’re looking for one of them. You’d probably start by looking at the item at the top of
the pile to check whether it was the one you were looking for. If it wasn’t, you’d check the
next item down the pile, and so on, until you either found the one you wanted or ran out
of items.

In computer science terminology, this is a sequential search. It is easy to implement
sequential search for an array or a linked list. If, for the moment, we limit ourselves to
items of type int, we can write a function to sequentially search an array like this:

§16 〈Sequentially search an array of ints 16 〉 ≡
/∗ Returns the smallest i such that array [i] == key , or −1 if key is not in array [].

array [] must be an array of n ints. ∗/
int seq search (int array [], int n, int key) {

int i ;
for (i = 0; i < n; i++)

if (array [i] == key)
return i ;

return −1;
}
This code is included in §595 and §600.

We can hardly hope to improve on the data requirements, space, or complexity of simple
sequential search, as they’re about as good as we can want. But the speed of sequential
search leaves something to be desired. The next section describes a simple modification
of the sequential search algorithm that can sometimes lead to big improvements in perfor-
mance.
See also: [Knuth 1998b], algorithm 6.1S; [Kernighan 1976], section 8.2; [Cormen 1990],
section 11.2; [Bentley 2000], sections 9.2 and 13.2, appendix 1.

Exercises:

1. Write a simple test framework for seq search(). It should read sample data from stdin
and collect them into an array, then search for each item in the array in turn and compare
the results to those expected, reporting any discrepancies on stdout and exiting with an
appropriate return value. You need not allow for the possibility of duplicate input values
and may limit the maximum number of input values.

20 GNU libavl 2.0.1

3.2 Sequential Search with Sentinel

Try to think of some ways to improve the speed of sequential search. It should be clear
that, to speed up a program, it pays to concentrate on the parts that use the most time to
begin with. In this case, it’s the loop.

Consider what happens each time through the loop:
1. The loop counter i is incremented and compared against n.
2. array [i] is compared against key .

If we could somehow eliminate one of these comparisons, the loop might be a lot faster.
So, let’s try. . . why do we need step 1? It’s because, otherwise, we might run off the end
of array [], causing undefined behavior, which is in turn because we aren’t sure that key is
in array []. If we knew that key was in array [], then we could skip step 1.

But, hey! we can ensure that the item we’re looking for is in the array. How? By putting
a copy of it at the end of the array. This copy is called a sentinel, and the search technique
as a whole is called sequential search with sentinel. Here’s the code:

§17 〈Sequentially search an array of ints using a sentinel 17 〉 ≡
/∗ Returns the smallest i such that array [i] == key , or −1 if key is not in array [].

array [] must be an modifiable array of n ints with room for a (n + 1)th element. ∗/
int seq sentinel search (int array [], int n, int key) {

int ∗p;
array [n] = key ;
for (p = array ; ∗p != key ; p++)

/∗ Nothing to do. ∗/;
return p − array < n ? p − array : −1;

}
This code is included in §600.

Notice how the code above uses a pointer, int ∗p, rather than a counter i as in
〈Sequentially search an array of ints 16 〉 earlier. For the most part, this is simply a style
preference: for iterating through an array, C programmers usually prefer pointers to array
indexes. Under older compilers, code using pointers often compiled into faster code as
well, but modern C compilers usually produce the same code whether pointers or indexes
are used.

The return statement in this function uses two somewhat advanced features of C: the
conditional or “ternary” operator ?: and pointer arithmetic. The former is a bit like an
expression form of an if statement. The expression a ? b : c first evaluates a. Then,
if a != 0, b is evaluated and the expression takes that value. Otherwise, a == 0, c is
evaluated, and the result is the expression’s value.

Pointer arithmetic is used in two ways here. First, the expression p++ acts to advance
p to point to the next int in array . This is analogous to the way that i++ would increase
the value of an integer or floating point variable i by one. Second, the expression p − array
results in the “difference” between p and array , i.e., the number of int elements between
the locations to which they point. For more information on these topics, please consult a
good C reference, such as [Kernighan 1988].

Searching with a sentinel requires that the array be modifiable and large enough to
hold an extra element. Sometimes these are inherently problematic—the array may not be

Chapter 3: Search Algorithms 21

modifiable or it might be too small—and sometimes they are problems because of external
circumstances. For instance, a program with more than one concurrent thread cannot
modify a shared array for sentinel search without expensive locking.

Sequential sentinel search is an improvement on ordinary sequential search, but as it
turns out there’s still room for improvement—especially in the runtime for unsuccessful
searches, which still always take n comparisons. In the next section, we’ll see one technique
that can reduce the time required for unsuccessful searches, at the cost of longer runtime
for successful searches.

See also: [Knuth 1998b], algorithm 6.1Q; [Cormen 1990], section 11.2; [Bentley 2000], section
9.2.

3.3 Sequential Search of Ordered Array

Let’s jump back to the pile-of-things analogy from the beginning of this chapter (see
Section 3.1 [Sequential Search], page 19). This time, suppose that instead of being in
random order, the pile you’re searching through is ordered on the property that you’re
examining; e.g., magazines sorted by publication date, if you’re looking for, say, the July
1988 issue.

Think about how this would simplify searching through the pile. Now you can sometimes
tell that the magazine you’re looking for isn’t in the pile before you get to the bottom,
because it’s not between the magazines that it otherwise would be. On the other hand, you
still might have to go through the entire pile if the magazine you’re looking for is newer
than the newest magazine in the pile (or older than the oldest, depending on the ordering
that you chose).

Back in the world of computers, we can apply the same idea to searching a sorted array:

§18 〈Sequentially search a sorted array of ints 18 〉 ≡
/∗ Returns the smallest i such that array [i] == key , or −1 if key is not in array [].

array [] must be an array of n ints sorted in ascending order. ∗/
int seq sorted search (int array [], int n, int key) {

int i ;

for (i = 0; i < n; i++)
if (key <= array [i])

return key == array [i] ? i : −1;

return −1;
}
This code is included in §600.

At first it might be a little tricky to see exactly how seq sorted search() works, so we’ll
work through a few examples. Suppose that array [] has the four elements {3, 5, 6, 8}, so
that n is 4. If key is 6, then the first time through the loop the if condition is 6 <= 3, or
false, so the loop repeats with i == 1. The second time through the loop we again have
a false condition, 6 <= 5, and the loop repeats again. The third time the if condition, 6
<= 6, is true, so control passes to the if statement’s dependent return. This return verifies
that 6 == 6 and returns i , or 2, as the function’s value.

22 GNU libavl 2.0.1

On the other hand, suppose key is 4, a value not in array []. For the first iteration, when
i is 0, the if condition, 4 <= 3, is false, but in the second iteration we have 4 <= 5, which
is true. However, this time key == array [i] is 4 == 5, or false, so −1 is returned.
See also: [Sedgewick 1998], program 12.4.

3.4 Sequential Search of Ordered Array with Sentinel

When we implemented sequential search in a sorted array, we lost the benefits of having
a sentinel. But we can reintroduce a sentinel in the same way we did before, and obtain
some of the same benefits. It’s pretty clear how to proceed:

§19 〈Sequentially search a sorted array of ints using a sentinel 19 〉 ≡
/∗ Returns the smallest i such that array [i] == key , or −1 if key is not in array [].

array [] must be an modifiable array of n ints, sorted in ascending order,
with room for a (n + 1)th element at the end. ∗/

int seq sorted sentinel search (int array [], int n, int key) {
int ∗p;
array [n] = key ;
for (p = array ; ∗p < key ; p++)

/∗ Nothing to do. ∗/;
return p − array < n && ∗p == key ? p − array : −1;

}
This code is included in §600.

With a bit of additional cleverness we can eliminate one objection to this sentinel ap-
proach. Suppose that instead of using the value being searched for as the sentinel value,
we used the maximum possible value for the type in question. If we did this, then we could
use almost the same code for searching the array.

The advantage of this approach is that there would be no need to modify the array in
order to search for different values, because the sentinel is the same value for all searches.
This eliminates the potential problem of searching an array in multiple contexts, due to
nested searches, threads, or signals, for instance. (In the code below, we will still put the
sentinel into the array, because our generic test program won’t know to put it in for us in
advance, but in real-world code we could avoid the assignment.)

We can easily write code for implementation of this technique:
§20 〈Sequentially search a sorted array of ints using a sentinel (2) 20 〉 ≡

/∗ Returns the smallest i such that array [i] == key , or −1 if key is not in array [].
array [] must be an array of n ints, sorted in ascending order,
with room for an (n + 1)th element to set to INT_MAX. ∗/

int seq sorted sentinel search 2 (int array [], int n, int key) {
int ∗p;
array [n] = INT_MAX;
for (p = array ; ∗p < key ; p++)

/∗ Nothing to do. ∗/;
return p − array < n && ∗p == key ? p − array : −1;

}
This code is included in §600.

Chapter 3: Search Algorithms 23

Exercises:

1. When can’t the largest possible value for the type be used as a sentinel?

3.5 Binary Search of Ordered Array

At this point we’ve squeezed just about all the performance we can out of sequential
search in portable C. For an algorithm that searches faster than our final refinement of
sequential search, we’ll have to reconsider our entire approach.

What’s the fundamental idea behind sequential search? It’s that we examine array
elements in order. That’s a fundamental limitation: if we’re looking for an element in the
middle of the array, we have to examine every element that comes before it. If a search
algorithm is going to be faster than sequential search, it will have to look at fewer elements.

One way to look at search algorithms based on repeated comparisons is to consider
what we learn about the array’s content at each step. Suppose that array [] has n elements
in sorted order, without duplicates, that array [j] contains key , and that we are trying to
learn the value j . In sequential search, we learn only a little about the data set from each
comparison with array [i]: either key == array [i] so that i == j , or key != array [i] so that
i != j and therefore j > i . As a result, we eliminate only one possibility at each step.

Suppose that we haven’t made any comparisons yet, so that we know nothing about the
contents of array []. If we compare key to array [i] for arbitrary i such that 0 ≤ i < n, what
do we learn? There are three possibilities:

• key < array [i]: Now we know that key < array [i] < array [i + 1] < · · · < array [n − 1].1

Therefore, 0 ≤ j < i .
• key == array [i]: We’re done: j == i .
• key > array [i]: Now we know that key > array [i] > array [i − 1] > · · · > array [0].

Therefore, i < j < n.

So, after one step, if we’re not done, we know that j > i or that j < i . If we’re equally
likely to be looking for each element in array [], then the best choice of i is n / 2: for that
value, we eliminate about half of the possibilities either way. (If n is odd, we’ll round down.)

After the first step, we’re back to essentially the same situation: we know that key is in
array [j] for some j in a range of about n / 2. So we can repeat the same process. Eventually,
we will either find key and thus j , or we will eliminate all the possibilities.

Let’s try an example. For simplicity, let array [] contain the values 100 through 114 in
numerical order, so that array [i] is 100 + i and n is 15. Suppose further that key is 110.
The steps that we’d go through to find j are described below. At each step, the facts are
listed: the known range that j can take, the selected value of i , the results of comparing
key to array [i], and what was learned from the comparison.

1. 0 ≤ j ≤ 14: i becomes (0 + 14) / 2 ≡ 7. 110 > array [i] ≡ 107, so now we know that
j > 7.

1 This sort of notation means very different things in C and mathematics. In mathematics, writing a < b
< c asserts both of the relations a < b and b < c, whereas in C, it expresses the evaluation of a < b,
then the comparison of the 0 or 1 result to the value of c. In mathematics this notation is invaluable,
but in C it is rarely meaningful. As a result, this book uses this notation only in the mathematical sense.

24 GNU libavl 2.0.1

2. 8 ≤ j ≤ 14: i becomes (8 + 14) / 2 ≡ 11. 110 < array [i] ≡ 111, so now we know
that j < 11.

3. 8 ≤ j ≤ 10: i becomes (8 + 10) / 2 ≡ 9. 110 > array [i] ≡ 109, so now we know that
j > 9.

4. 10 ≤ j ≤ 10: i becomes (10 + 10) / 2 ≡ 10. 110 ≡ array [i] ≡ 110, so we’re done
and i ≡ j ≡ 10.

In case you hadn’t yet figured it out, this technique is called binary search. We can
make an initial C implementation pretty easily:

§21 〈Binary search of ordered array 21 〉 ≡
/∗ Returns the offset within array [] of an element equal to key , or −1 if key is not in array [].

array [] must be an array of n ints sorted in ascending order. ∗/
int binary search (int array [], int n, int key) {

int min = 0;
int max = n − 1;

while (max >= min) {
int i = (min + max) / 2;
if (key < array [i]) max = i − 1;
else if (key > array [i]) min = i + 1;
else return i ;

}
return −1;

}
This code is included in §600.

The maximum number of comparisons for a binary search in an array of n elements
is about log2 n, as opposed to a maximum of n comparisons for sequential search. For
moderate to large values of n, this is a lot better.

On the other hand, for small values of n, binary search may actually be slower because
it is more complicated than sequential search. We also have to put our array in sorted
order before we can use binary search. Efficiently sorting an n-element array takes time
proportional to n log2 n for large n. So binary search is preferred if n is large enough (see
the answer to Exercise 4 for one typical value) and if we are going to do enough searches
to justify the cost of the initial sort.

Further small refinements are possible on binary search of an ordered array. Try some
of the exercises below for more information.

See also: [Knuth 1998b], algorithm 6.2.1B; [Kernighan 1988], section 3.3; [Bentley 2000],
chapters 4 and 5, section 9.3, appendix 1; [Sedgewick 1998], program 12.6.

Exercises:

1. Function binary search() above uses three local variables: min and max for the ends of
the remaining search range and i for its midpoint. Write and test a binary search function
that uses only two variables: i for the midpoint as before and m representing the width
of the range on either side of i . You may require the existence of a dummy element just
before the beginning of the array. Be sure, if so, to specify what its value should be.

Chapter 3: Search Algorithms 25

2. The standard C library provides a function, bsearch(), for searching ordered arrays.
Commonly, bsearch() is implemented as a binary search, though ANSI C does not require
it. Do the following:
a. Write a function compatible with the interface for binary search() that uses bsearch()

“under the hood.” You’ll also have to write an additional callback function for use by
bsearch().

b. Write and test your own version of bsearch(), implementing it using a binary search.
(Use a different name to avoid conflicts with the C library.)

3. An earlier exercise presented a simple test framework for seq search(), but now we have
more search functions. Write a test framework that will handle all of them presented so
far. Add code for timing successful and unsuccessful searches. Let the user specify, on the
command line, the algorithm to use, the size of the array to search, and the number of
search iterations to run.

4. Run the test framework from the previous exercise on your own system for each algo-
rithm. Try different array sizes and compiler optimization levels. Be sure to use enough
iterations to make the searches take at least a few seconds each. Analyze the results: do
they make sense? Try to explain any apparent discrepancies.

3.6 Binary Search Tree in Array

Binary search is pretty fast. Suppose that we wish to speed it up anyhow. Then,
the obvious speed-up targets in 〈Binary search of ordered array 21 〉 above are the while
condition and the calculations determining values of i , min, and max . If we could eliminate
these, we’d have an incrementally faster technique, all else being equal. And, as it turns
out, we can eliminate both of them, the former by use of a sentinel and the latter by
precalculation.

Let’s consider precalculating i , min, and max first. Think about the nature of the
choices that binary search makes at each step. Specifically, in 〈Binary search of ordered
array 21 〉 above, consider the dependence of min and max upon i . Is it ever possible for
min and max to have different values for the same i and n?

The answer is no. For any given i and n, min and max are fixed. This is important
because it means that we can represent the entire “state” of a binary search of an n-element
array by the single variable i . In other words, if we know i and n, we know all the choices
that have been made to this point and we know the two possible choices of i for the next
step.

This is the key insight in eliminating calculations. We can use an array in which the
items are labeled with the next two possible choices.

An example is indicated. Let’s continue with our example of an array containing the 16
integers 100 to 115. We define an entry in the array to contain the item value and the array
index of the item to examine next for search values smaller and larger than the item:

§22 〈Binary search tree entry 22 〉 ≡
/∗ One entry in a binary search tree stored in an array. ∗/
struct binary tree entry {

int value; /∗ This item in the binary search tree. ∗/

26 GNU libavl 2.0.1

int smaller ; /∗ Array index of next item for smaller targets. ∗/
int larger ; /∗ Array index of next item for larger targets. ∗/

};
This code is included in §617.

Of course, it’s necessary to fill in the values for smaller and larger . A few moments’
reflection should allow you to figure out one method for doing so. Here’s the full array, for
reference:
const struct binary tree entry bins[16] = {

{100, 15, 15}, {101, 0, 2}, {102, 15, 15}, {103, 1, 5}, {104, 15, 15},
{105, 4, 6}, {106, 15, 15}, {107, 3, 11}, {108, 15, 15}, {109, 8, 10},
{110, 15, 15}, {111, 9, 13}, {112, 15, 15}, {113, 12, 14}, {114, 15, 15},
{0, 0, 0},

};
For now, consider only bins[]’s first 15 rows. Within these rows, the first column is value,

the item value, and the second and third columns are smaller and larger , respectively.
Values 0 through 14 for smaller and larger indicate the index of the next element of bins[]
to examine. Value 15 indicates “element not found”. Element array [15] is not used for
storing data.

Try searching for key == 110 in bins[], starting from element 7, the midpoint:
1. i == 7: 110 > bins[i].value == 107, so let i = bins[i].larger , or 11.
2. i == 11: 110 < bins[i].value == 111, so let i = bins[i].smaller , or 10.
3. i == 10: 110 == bins[i].value == 110, so we’re done.

We can implement this search in C code. The function uses the common C idiom of
writing for (;;) for an “infinite” loop:

§23 〈Search of binary search tree stored as array 23 〉 ≡
/∗ Returns i such that array [i].value == key , or -1 if key is not in array [].

array [] is an array of n elements forming a binary search tree,
with its root at array [n / 2], and space for an (n + 1)th value at the end. ∗/

int binary search tree array (struct binary tree entry array [], int n, int key) {
int i = n / 2;
array [n].value = key ;
for (;;)

if (key > array [i].value) i = array [i].larger ;
else if (key < array [i].value) i = array [i].smaller ;
else return i != n ? i : −1;

}
This code is included in §617.

Examination of the code above should reveal the purpose of bins[15]. It is used as a
sentinel value, allowing the search to always terminate without the use of an extra test on
each loop iteration.

The result of augmenting binary search with “pointer” values like smaller and larger is
called a binary search tree.

Exercises:

Chapter 3: Search Algorithms 27

1. Write a function to automatically initialize smaller and larger within bins[].

2. Write a simple automatic test program for binary search tree array(). Let the user spec-
ify the size of the array to test on the command line. You may want to use your results
from the previous exercise.

3.7 Dynamic Lists

Up until now, we’ve considered only lists whose contents are fixed and unchanging, that
is, static lists. But in real programs, many lists are dynamic, with their contents changing
rapidly and unpredictably. For the case of dynamic lists, we need to reconsider some of the
attributes of the types of lists that we’ve examined.2

Specifically, we want to know how long it takes to insert a new element into a list and
to remove an existing element from a list. Think about it for each type of list examined so
far:

Unordered array
Adding items to the list is easy and fast, unless the array grows too large for
the block and has to be copied into a new area of memory. Just copy the new
item to the end of the list and increase the size by one.
Removing an item from the list is almost as simple. If the item to delete happens
to be located at the very end of the array, just reduce the size of the list by one.
If it’s located at any other spot, you must also copy the element that is located
at the very end onto the location that the deleted element used to occupy.

Ordered array
In terms of inserting and removing elements, ordered arrays are mechanically
the same as unordered arrays. The difference is that insertions and deletions
can only be at one end of the array if the item in question is the largest or
smallest in the list. The practical upshot is that dynamic ordered arrays are
only efficient if items are added and removed in sorted order.

Binary search tree
Insertions and deletions are where binary search trees have their chance to shine.
Insertions and deletions are efficient in binary search trees whether they’re made
at the beginning, middle, or end of the lists.

Clearly, binary search trees are superior to ordered or unordered arrays in situations that
require insertion and deletion in random positions. But insertion and deletion operations
in binary search trees require a bit of explanation if you’ve never seen them before. This is
what the next chapter is for, so read on.

2 These uses of the words “static” and “dynamic” are different from their meanings in the phrases “static
allocation” and “dynamic allocation.” See Appendix C [Glossary], page 331, for more details.

28 GNU libavl 2.0.1

Chapter 4: Binary Search Trees 29

4 Binary Search Trees

The previous chapter motivated the need for binary search trees. This chapter imple-
ments a table ADT backed by a binary search tree. Along the way, we’ll see how binary
search trees are constructed and manipulated in abstract terms as well as in concrete C
code.

The library includes a header file 〈 bst.h 24 〉 and an implementation file 〈 bst.c 25 〉,
outlined below. We borrow most of the header file from the generic table headers designed
a couple of chapters back, simply replacing tbl by bst , the prefix used in this table module.

§24 〈 bst.h 24 〉 ≡
〈License 1 〉
#ifndef BST_H
#define BST_H 1

#include 〈 stddef.h 〉
〈Table types; tbl ⇒ bst 14 〉
〈BST maximum height 28 〉
〈BST table structure 27 〉
〈BST node structure 26 〉
〈BST traverser structure 61 〉
〈Table function prototypes; tbl ⇒ bst 15 〉
〈BST extra function prototypes 88 〉
#endif /∗ bst.h ∗/
〈Table assertion function control directives; tbl ⇒ bst 593 〉

§25 〈 bst.c 25 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include 〈 string.h 〉
#include “bst.h”

〈BST operations 29 〉

Exercises:

1. What is the purpose of #ifndef BST_H . . . #endif in 〈 bst.h 24 〉 above?

4.1 Vocabulary

When binary search trees, or BSTs, were introduced in the previous chapter, the reason
that they were called binary search trees wasn’t explained. The diagram below should help
to clear up matters, and incidentally let us define some BST-related vocabulary:

30 GNU libavl 2.0.1

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

This diagram illustrates the binary search tree example from the previous chapter. The
circle or node at the top, labeled 107, is the starting point of any search. As such, it is called
the root of the tree. The node connected to it below to the left, labeled 103, is the root’s
left child, and node 111 to its lower right is its right child. A node’s left child corresponds
to smaller from the array-based BST of the previous chapter, and a right child corresponds
to larger .

Some nodes, such as 106 here, don’t have any children. Such a node is called a leaf or
terminal node. Although not shown here, it’s also possible for a node to have only one child,
either on the left or the right side. A node with at least one child is called a nonterminal
node.

Each node in a binary search tree is, conceptually, the root of its own tree. Such a tree
is called a subtree of the tree that contains it. The left child of a node and recursively all of
that child’s children is a subtree of the node, called the left subtree of the node. The term
right subtree is defined similarly for the right side of the node. For instance, above, nodes
104, 105, and 106 are the right subtree of node 103, with 105 as the subtree’s root.

A BST without any nodes is called an empty tree. Both subtrees of all even-numbered
nodes in the BST above are empty trees.

In a binary search tree, the left child of a node, if it exists, has a smaller value than the
node, and the right child of a node has a larger value. The more general term binary tree,
on the other hand, refers to a data structure with the same form as a binary search tree,
but which does not necessarily share this property. There are also related, but different,
structures simply called “trees”.

In this book, all our binary trees are binary search trees, and this book will not discuss
plain trees at all. As a result, we will often be a bit loose in terminology and use the term
“binary tree” or “tree” when “binary search tree” is the proper term.

Although this book discusses binary search trees exclusively, it is instructive to occa-
sionally display, as a counterexample, a diagram of a binary tree whose nodes are out of
order and therefore not a BST. Such diagrams are marked ∗∗ to reinforce their non-BST
nature to the casual browser.

See also: [Knuth 1997], section 2.3; [Knuth 1998b], section 6.2.2; [Cormen 1990], section
13.1; [Sedgewick 1998], section 5.4.

4.1.1 Aside: Differing Definitions

The definitions in the previous section are the ones used in this book. They are the defi-
nitions that programmers often use in designing and implementing real programs. However,
they are slightly different from the definitions used in formal computer science textbooks.
This section gives these formal definitions and contrasts them against our own.

Chapter 4: Binary Search Trees 31

The most important difference is in the definition of a binary tree itself. Formally, a
binary tree is either an “external node” or an “internal node” connected to a pair of binary
trees called the internal node’s left subtree and right subtree. Internal nodes correspond to
our notion of nodes, and external nodes correspond roughly to nodes’ empty left or right
subtrees. The generic term “node” includes both internal and external nodes.

Every internal node always has exactly two children, although those children may be
external nodes, so we must also revise definitions that depend on a node’s number of chil-
dren. Then, a “leaf” is an internal node with two external node children and a “nonterminal
node” is an internal node at least one of whose children is an internal node. Finally, an
“empty tree” is a binary tree that contains of only an external node.

Tree diagrams in books that use these formal definitions show both internal and external
nodes. Typically, internal nodes are shown as circles, external nodes as square boxes. Here’s
an example BST in the format used in this book, shown alongside an identical BST in the
format used in formal computer science books:

1

2

3

4

5

1

2

3

4

5

See also: [Sedgewick 1998], section 5.4.

4.2 Data Types

The types for memory allocation and managing data as void ∗ pointers were discussed
previously (see Chapter 2 [The Table ADT], page 7), but to build a table implementation
using BSTs we must define some additional types. In particular, we need struct bst node to
represent an individual node and struct bst table to represent an entire table. The following
sections take care of this.

4.2.1 Node Structure

When binary search trees were introduced in the last chapter, we used indexes into an
array to reference items’ smaller and larger values. But in C, BSTs are usually constructed
using pointers. This is a more general technique, because pointers aren’t restricted to
references within a single array.

§26 〈BST node structure 26 〉 ≡
/∗ A binary search tree node. ∗/
struct bst node {

struct bst node ∗bst link [2]; /∗ Subtrees. ∗/
void ∗bst data; /∗ Pointer to data. ∗/

};
This code is included in §24.

In struct bst node, bst link [0] takes the place of smaller , and bst link [1] takes the place
of larger . If, in our array implementation of binary search trees, either of these would have
pointed to the sentinel, it instead is assigned NULL, the null pointer constant.

32 GNU libavl 2.0.1

In addition, bst data replaces value. We use a void ∗ generic pointer here, instead of int
as used in the last chapter, to let any kind of data be stored in the BST. See Section 2.3
[Comparison Function], page 8, for more information on void ∗ pointers.

4.2.2 Tree Structure

The struct bst table structure ties together all of the data needed to keep track of a
table implemented as a binary search tree:

§27 〈BST table structure 27 〉 ≡
/∗ Tree data structure. ∗/
struct bst table {

struct bst node ∗bst root ; /∗ Tree’s root. ∗/
bst comparison func ∗bst compare; /∗ Comparison function. ∗/
void ∗bst param; /∗ Extra argument to bst compare. ∗/
struct libavl allocator ∗bst alloc; /∗ Memory allocator. ∗/
size t bst count ; /∗ Number of items in tree. ∗/
unsigned long bst generation; /∗ Generation number. ∗/

};
This code is included in §24, §142, and §192.

Most of struct bst table’s members should be familiar. Member bst root points to the
root node of the BST. Together, bst compare and bst param specify how items are compared
(see Section 2.4 [Item and Copy Functions], page 10). The members of bst alloc specify how
to allocate memory for the BST (see Section 2.5 [Memory Allocation], page 11). The number
of items in the BST is stored in bst count (see Section 2.7 [Count], page 13).

The final member, bst generation, is a generation number. When a tree is created, it
starts out at zero. After that, it is incremented every time the tree is modified in a way
that might disturb a traverser. We’ll talk more about the generation number later (see
Section 4.9.3 [Better Iterative Traversal], page 53).

Exercises:

*1. Why is it a good idea to include bst count in struct bst table? Under what circum-
stances would it be better to omit it?

4.2.3 Maximum Height

For efficiency, some of the BST routines use a stack of a fixed maximum height. This
maximum height affects the maximum number of nodes that can be fully supported by
Libavl in any given tree, because a binary tree of height n contains at most 2n − 1 nodes.

The BST_MAX_HEIGHT macro sets the maximum height of a BST. The default value of
32 allows for trees with up to 232 − 1 = 4,294,967,295 nodes. On today’s common 32-bit
computers that support only 4 GB of memory at most, this is hardly a limit, because
memory would be exhausted long before the tree became too big.

The BST routines that use fixed stacks also detect stack overflow and call a routine to
“balance” or restructure the tree in order to reduce its height to the permissible range. The
limit on the BST height is therefore not a severe restriction.

§28 〈BST maximum height 28 〉 ≡

Chapter 4: Binary Search Trees 33

/∗ Maximum BST height. ∗/
#ifndef BST_MAX_HEIGHT
#define BST_MAX_HEIGHT 32
#endif

This code is included in §24, §142, §297, §415, and §519.

Exercises:

1. Suggest a reason why the BST_MAX_HEIGHT macro is defined conditionally. Are there any
potential pitfalls?

4.3 Rotations

Soon we’ll jump right in and start implementing the table functions for BSTs. But
before that, there’s one more topic to discuss, because they’ll keep coming up from time to
time throughout the rest of the book. This topic is the concept of a rotation. A rotation is
a simple transformation of a binary tree that looks like this:

a

X

b

Y

c ⇔ a

X

b

Y

c

In this diagram, X and Y represent nodes and a, b, and c are arbitrary binary trees
that may be empty. A rotation that changes a binary tree of the form shown on the left to
the form shown on the right is called a right rotation on Y . Going the other way, it is a
left rotation on X .

This figure also introduces new graphical conventions. First, the line leading vertically
down to the root explicitly shows that the BST may be a subtree of a larger tree. Also,
(possible empty) subtrees, as opposed to individual nodes, are indicated by lowercase letters
not enclosed by circles.

A rotation changes the local structure of a binary tree without changing its ordering
as seen through inorder traversal. That’s a subtle statement, so let’s dissect it bit by bit.
Rotations have the following properties:

Rotations change the structure of a binary tree.
In particular, rotations can often, depending on the tree’s shape, be used to
change the height of a part of a binary tree.

Rotations change the local structure of a binary tree.
Any given rotation only affects the node rotated and its immediate children.
The node’s ancestors and its children’s children are unchanged.

Rotations do not change the ordering of a binary tree.
If a binary tree is a binary search tree before a rotation, it is a binary search
tree after a rotation. So, we can safely use rotations to rearrange a BST-based
structure, without concerns about upsetting its ordering.

See also: [Cormen 1990], section 14.2; [Sedgewick 1998], section 12.8.

34 GNU libavl 2.0.1

Exercises:

1. For each of the binary search trees below, perform a right rotation at node 4.

1

2

3

4

5

1

2

4

1

2

3

4

5

6

7

2. Write a pair of functions, one to perform a right rotation at a given BST node, one to
perform a left rotation. What should be the type of the functions’ parameter?

4.4 Operations

Now can start to implement the operations that we’ll want to perform on BSTs. Here’s
the outline of the functions we’ll implement. We use the generic table insertion convenience
functions from Exercise 2.8-3 to implement bst insert() and bst replace(), as well the generic
assertion function implementations from Exercise 2.9-2 to implement tbl assert insert() and
tbl assert delete(). We also include a copy of the default memory allocation functions for
use with BSTs:

§29 〈BST operations 29 〉 ≡
〈BST creation function 30 〉
〈BST search function 31 〉
〈BST item insertion function 32 〉
〈Table insertion convenience functions; tbl ⇒ bst 592 〉
〈BST item deletion function 37 〉
〈BST traversal functions 63 〉
〈BST copy function 83 〉
〈BST destruction function 84 〉
〈BST balance function 87 〉
〈Default memory allocation functions; tbl ⇒ bst 6 〉
〈Table assertion functions; tbl ⇒ bst 594 〉
This code is included in §25.

4.5 Creation

We need to write bst create() to create an empty BST. All it takes is a little bit of
memory allocation and initialization:

§30 〈BST creation function 30 〉 ≡
struct bst table ∗bst create (bst comparison func ∗compare, void ∗param,

struct libavl allocator ∗allocator) {
struct bst table ∗tree;
assert (compare != NULL);
if (allocator == NULL)

allocator = &bst allocator default ;
tree = allocator→libavl malloc (allocator , sizeof ∗tree);
if (tree == NULL)

Chapter 4: Binary Search Trees 35

return NULL;
tree→bst root = NULL;
tree→bst compare = compare;
tree→bst param = param;
tree→bst alloc = allocator ;
tree→bst count = 0;
tree→bst generation = 0;
return tree;

}
This code is included in §29, §145, and §196.

4.6 Search

Searching a binary search tree works just the same way as it did before when we were
doing it inside an array. We can implement bst find() immediately:

§31 〈BST search function 31 〉 ≡
void ∗bst find (const struct bst table ∗tree, const void ∗item) {

const struct bst node ∗p;
assert (tree != NULL && item != NULL);
for (p = tree→bst root ; p != NULL;) {

int cmp = tree→bst compare (item, p→bst data, tree→bst param);
if (cmp < 0) p = p→bst link [0];
else if (cmp > 0) p = p→bst link [1];
else /∗ cmp == 0 ∗/ return p→bst data;

}
return NULL;

}
This code is included in §29, §145, §196, §489, §522, and §554.

See also: [Knuth 1998b], section 6.2.2; [Cormen 1990], section 13.2; [Kernighan 1988], sec-
tion 3.3; [Bentley 2000], chapters 4 and 5, section 9.3, appendix 1; [Sedgewick 1998], program
12.7.

4.7 Insertion

Inserting new nodes into a binary search tree is easy. To start out, we work the same
way as in a search, traversing the tree from the top down, as if we were searching for the
item that we’re inserting. If we find one, the item is already in the tree, and we need not
insert it again. But if the new item is not in the tree, eventually we “fall off” the bottom of
the tree. At this point we graft the new item as a child of the node that we last examined.

An example is in order. Consider this binary search tree:

2

3

4

5

6

8

36 GNU libavl 2.0.1

Suppose that we wish to insert a new item, 7, into the tree. 7 is greater than 5, so
examine 5’s right child, 8. 7 is less than 8, so examine 8’s left child, 6. 7 is greater than 6,
but 6 has no right child. So, make 7 the right child of 6:

2

3

4

5

6

7

8

We cast this in a form compatible with the abstract description as follows:
§32 〈BST item insertion function 32 〉 ≡

void ∗∗bst probe (struct bst table ∗tree, void ∗item) {
struct bst node ∗p, ∗q ; /∗ Current node in search and its parent. ∗/
int dir ; /∗ Side of q on which p is located. ∗/
struct bst node ∗n; /∗ Newly inserted node. ∗/
assert (tree != NULL && item != NULL);
for (q = NULL, p = tree→bst root ; p != NULL; q = p, p = p→bst link [dir]) {

int cmp = tree→bst compare (item, p→bst data, tree→bst param);
if (cmp == 0)

return &p→bst data;
dir = cmp > 0;

}
n = tree→bst alloc→libavl malloc (tree→bst alloc, sizeof ∗p);
if (n == NULL)

return NULL;
tree→bst count++;
n→bst link [0] = n→bst link [1] = NULL;
n→bst data = item;
if (q != NULL)

q→bst link [dir] = n;
else tree→bst root = n;
return &n→bst data;

}
This code is included in §29.

See also: [Knuth 1998b], algorithm 6.2.2T; [Cormen 1990], section 13.3; [Bentley 2000],
section 13.3; [Sedgewick 1998], program 12.7.

Exercises:

1. Explain the expression p = (struct bst node ∗) &tree→bst root . Suggest an alternative.

2. Rewrite bst probe() to use only a single local variable of type struct bst node ∗∗.
3. Suppose we want to make a new copy of an existing binary search tree, preserving the
original tree’s shape, by inserting items into a new, currently empty tree. What constraints
are there on the order of item insertion?

Chapter 4: Binary Search Trees 37

4. Write a function that calls a provided bst item func for each node in a provided BST in
an order suitable for reproducing the original BST, as discussed in Exercise 3.

4.7.1 Aside: Root Insertion

One side effect of the usual method for BST insertion, implemented in the previous
section, is that items inserted more recently tend to be farther from the root, and therefore
it takes longer to find them than items inserted longer ago. If all items are equally likely
to be requested in a search, this is unimportant, but this is regrettable for some common
usage patterns, where recently inserted items tend to be searched for more often than older
items.

In this section, we examine an alternative scheme for insertion that addresses this prob-
lem, called “insertion at the root” or “root insertion”. An insertion with this algorithm
always places the new node at the root of the tree. Following a series of such insertions,
nodes inserted more recently tend to be nearer the root than other nodes.

As a first attempt at implementing this idea, we might try simply making the new node
the root and assigning the old root as one of its children. Unfortunately, this and similar
approaches will not work because there is no guarantee that nodes in the existing tree have
values all less than or all greater than the new node.

An approach that will work is to perform a conventional insertion as a leaf node, then
use a series of rotations to move the new node to the root. For example, the diagram below
illustrates rotations to move node 4 to the root. A left rotation on 3 changes the first tree
into the second, a right rotation on 5 changes the second into the third, and finally a left
rotation on 1 moves 4 into the root position:

1

2

3

4

5

6 ⇒

1

2

3

4

5

6 ⇒

1

2

3

4

5

6

⇒
1

2

3

4

5

6

The general rule follows the pattern above. If we moved down to the left from a node x
during the insertion search, we rotate right at x . If we moved down to the right, we rotate
left.

The implementation is straightforward. As we search for the insertion point we keep
track of the nodes we’ve passed through, then after the insertion we return to each of them
in reverse order and perform a rotation:

§33 〈BST item insertion function, root insertion version 33 〉 ≡
void ∗∗bst probe (struct bst table ∗tree, void ∗item) {

〈 rb probe() local variables; rb ⇒ bst 198 〉
〈Step 1: Search BST for insertion point, root insertion version 34 〉
〈Step 2: Insert new BST node, root insertion version 35 〉
〈Step 3: Move BST node to root 36 〉
return &n→bst data;

38 GNU libavl 2.0.1

}
§34 〈Step 1: Search BST for insertion point, root insertion version 34 〉 ≡

pa[0] = (struct bst node ∗) &tree→bst root ;
da[0] = 0;
k = 1;
for (p = tree→bst root ; p != NULL; p = p→bst link [da[k − 1]]) {

int cmp = tree→bst compare (item, p→bst data, tree→bst param);
if (cmp == 0)

return &p→bst data;
if (k >= BST_MAX_HEIGHT) {

bst balance (tree);
return bst probe (tree, item);

}
pa[k] = p;
da[k++] = cmp > 0;

}
This code is included in §33.

§35 〈Step 2: Insert new BST node, root insertion version 35 〉 ≡
n = pa[k − 1]→bst link [da[k − 1]] =

tree→bst alloc→libavl malloc (tree→bst alloc, sizeof ∗n);
if (n == NULL)

return NULL;
n→bst link [0] = n→bst link [1] = NULL;
n→bst data = item;
tree→bst count++;
tree→bst generation++;
This code is included in §33.

§36 〈Step 3: Move BST node to root 36 〉 ≡
for (; k > 1; k−−) {

struct bst node ∗q = pa[k − 1];
if (da[k − 1] == 0) {

q→bst link [0] = n→bst link [1];
n→bst link [1] = q ;

} else /∗ da[k − 1] == 1 ∗/ {
q→bst link [1] = n→bst link [0];
n→bst link [0] = q ;

}
pa[k − 2]→bst link [da[k − 2]] = n;

}
This code is included in §33, §622, and §627.

See also: [Sedgewick 1998], section 12.8.

Exercises:

1. Root insertion will prove useful later when we write a function to join a pair of disjoint
BSTs (see Section 4.13 [Joining BSTs], page 78). For that purpose, we need to be able to

Chapter 4: Binary Search Trees 39

insert a preallocated node as the root of an arbitrary tree that may be a subtree of some
other tree. Write a function to do this matching the following prototype:

static int root insert (struct bst table ∗tree, struct bst node ∗∗root ,
struct bst node ∗new node);

Your function should insert new node at ∗root using root insertion, storing new node into
∗root , and return nonzero only if successful. The subtree at ∗root is in tree. You may
assume that no node matching new node exists within subtree root .

2. Now implement a root insertion as in Exercise 1, except that the function is not allowed
to fail, and rebalancing the tree is not acceptable either. Use the same prototype with the
return type changed to void.

*3. Suppose that we perform a series of root insertions in an initially empty BST. What
kinds of insertion orders require a large amount of stack?

4.8 Deletion

Deleting an item from a binary search tree is a little harder than inserting one. Before we
write any code, let’s consider how to delete nodes from a binary search tree in an abstract
fashion. Here’s a BST from which we can draw examples during the discussion:

1

2

3

4

5

6

7

8

9

It is more difficult to remove some nodes from this tree than to remove others. Here, we
recognize three distinct cases (Exercise 4.8-1 offers a fourth), described in detail below in
terms of the deletion of a node designated p.

Case 1: p has no right child

It is trivial to delete a node with no right child, such as node 1, 4, 7, or 8 above. We
replace the pointer leading to p by p’s left child, if it has one, or by a null pointer, if not.
In other words, we replace the deleted node by its left child. For example, the process of
deleting node 8 looks like this:

1

2

3

4

5

6

7

8p

9

⇒
1

2

3

4

5

6

7

9

40 GNU libavl 2.0.1

Case 2: p’s right child has no left child

This case deletes any node p with a right child r that itself has no left child. Nodes 2,
3, and 6 in the tree above are examples. In this case, we move r into p’s place, attaching
p’s former left subtree, if any, as the new left subtree of r . For instance, to delete node 2
in the tree above, we can replace it by its right child 3, giving node 2’s left child 1 to node
3 as its new left child. The process looks like this:

1

2p

3 r

4

5

6

7

8

9

⇒ 1

3 r

4

5

6

7

8

9

Case 3: p’s right child has a left child

This is the “hard” case, where p’s right child r has a left child. but if we approach it
properly we can make it make sense. Let p’s inorder successor, that is, the node with the
smallest value greater than p, be s. Then, our strategy is to detach s from its position in
the tree, which is always an easy thing to do, and put it into the spot formerly occupied
by p, which disappears from the tree. In our example, to delete node 5, we move inorder
successor node 6 into its place, like this:

1

2

3

4

5p

6 s

7

8

9

⇒
1

2

3

4

6s

7

8

9

But how do we know that node s exists and that we can delete it easily? We know that
it exists because otherwise this would be case 1 or case 2 (consider their conditions). We
can easily detach from its position for a more subtle reason: s is the inorder successor of p
and is therefore has the smallest value in p’s right subtree, so s cannot have a left child. (If
it did, then this left child would have a smaller value than s, so it, rather than s, would be
p’s inorder successor.) Because s doesn’t have a left child, we can simply replace it by its
right child, if any. This is the mirror image of case 1.

Implementation

The code for BST deletion closely follows the above discussion. Let’s start with an
outline of the function:

§37 〈BST item deletion function 37 〉 ≡
void ∗bst delete (struct bst table ∗tree, const void ∗item) {

struct bst node ∗p, ∗q ; /∗ Node to delete and its parent. ∗/

Chapter 4: Binary Search Trees 41

int cmp; /∗ Comparison between p→bst data and item. ∗/
int dir ; /∗ Side of q on which p is located. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Find BST node to delete 38 〉
〈Step 2: Delete BST node 39 〉
〈Step 3: Finish up after deleting BST node 44 〉

}
This code is included in §29.

We begin by finding the node to delete, in much the same way that bst find() did. But,
in every case above, we replace the link leading to the node being deleted by another node
or a null pointer. To do so, we have to keep track of the pointer that led to the node to be
deleted. This is the purpose of q and dir in the code below.

§38 〈Step 1: Find BST node to delete 38 〉 ≡
p = (struct bst node ∗) &tree→bst root ;
for (cmp = −1; cmp != 0; cmp = tree→bst compare (item, p→bst data, tree→bst param)) {

dir = cmp > 0;
q = p;
p = p→bst link [dir];
if (p == NULL)

return NULL;
}
item = p→bst data;
This code is included in §37.

Now we can actually delete the node. Here is the code to distinguish between the three
cases:

§39 〈Step 2: Delete BST node 39 〉 ≡
if (p→bst link [1] == NULL) { 〈Case 1 in BST deletion 40 〉 }
else {

struct bst node ∗r = p→bst link [1];
if (r→bst link [0] == NULL) {

〈Case 2 in BST deletion 41 〉
} else {

〈Case 3 in BST deletion 42 〉
}

}
This code is included in §37.

In case 1, we simply replace the node by its left subtree:
§40 〈Case 1 in BST deletion 40 〉 ≡

q→bst link [dir] = p→bst link [0];
This code is included in §39.

In case 2, we attach the node’s left subtree as its right child r ’s left subtree, then replace
the node by r :

§41 〈Case 2 in BST deletion 41 〉 ≡
r→bst link [0] = p→bst link [0];

42 GNU libavl 2.0.1

q→bst link [dir] = r ;
This code is included in §39.

We begin case 3 by finding p’s inorder successor as s, and the parent of s as r . Node
p’s inorder successor is the smallest value in p’s right subtree and that the smallest value
in a tree can be found by descending to the left until a node with no left child is found:

§42 〈Case 3 in BST deletion 42 〉 ≡
struct bst node ∗s;
for (;;) {

s = r→bst link [0];
if (s→bst link [0] == NULL)

break;
r = s;

}
See also §43.

This code is included in §39.

Case 3 wraps up by adjusting pointers so that s moves into p’s place:
§43 〈Case 3 in BST deletion 42 〉 +≡

r→bst link [0] = s→bst link [1];
s→bst link [0] = p→bst link [0];
s→bst link [1] = p→bst link [1];
q→bst link [dir] = s;

As the final step, we decrement the number of nodes in the tree, free the node, and
return its data:

§44 〈Step 3: Finish up after deleting BST node 44 〉 ≡
tree→bst alloc→libavl free (tree→bst alloc, p);
tree→bst count−−;
tree→bst generation++;
return (void ∗) item;
This code is included in §37.

See also: [Knuth 1998b], algorithm 6.2.2D; [Cormen 1990], section 13.3.

Exercises:

1. Write code for a case 1.5 which handles deletion of nodes with no left child.

2. In the code presented above for case 3, we update pointers to move s into p’s position,
then free p. An alternate approach is to replace p’s data by s’s and delete s. Write code to
use this approach. Can a similar modification be made to either of the other cases?

*3. The code in the previous exercise is a few lines shorter than that in the main text, so
it would seem to be preferable. Explain why the revised code, and other code based on the
same idea, cannot be used in Libavl. (Hint: consider the semantics of Libavl traversers.)

4.8.1 Aside: Deletion by Merging

The Libavl algorithm for deletion is commonly used, but it is also seemingly ad-hoc
and arbitrary in its approach. In this section we’ll take a look at another algorithm that

Chapter 4: Binary Search Trees 43

may seem a little more uniform. Unfortunately, though it is conceptually simpler in some
ways, in practice this algorithm is both slower and more difficult to properly implement.

The idea behind this algorithm is to consider deletion as breaking the links between the
deleted node and its parent and children. In the most general case, we end up with three
disconnected BSTs, one that contains the deleted node’s parent and two corresponding to
the deleted node’s former subtrees. The diagram below shows how this idea works out for
the deletion of node 5 from the tree on the left:

1

2

3

4

5

6

7

8

9 ⇒

1

2

3

4

6

7

8

9

Of course, the problem then becomes to reassemble the pieces into a single binary search
tree. We can do this by merging the two former subtrees of the deleted node and attaching
them as the right child of the parent subtree. As the first step in merging the subtrees,
we take the minimum node r in the former right subtree and repeatedly perform a right
rotation on its parent, until it is the root of its subtree. The process up to this point looks
like this for our example, showing only the subtree containing r :

6r

7

8

9

⇒
6r

7

8

9

⇒

6r

7

8

9

Now, because r is the root and the minimum node in its subtree, r has no left child.
Also, all the nodes in the opposite subtree are smaller than r . So to merge these subtrees,
we simply link the opposite subtree as r ’s left child and connect r in place of the deleted
node:

1

2

3

4

6 r

7

8

9
⇒

1

2

3

4

6 r

7

8

9

The function outline is straightforward:

§45 〈BST item deletion function, by merging 45 〉 ≡
void ∗bst delete (struct bst table ∗tree, const void ∗item) {

struct bst node ∗p; /∗ The node to delete, or a node part way to it. ∗/

44 GNU libavl 2.0.1

struct bst node ∗q ; /∗ Parent of p. ∗/
int cmp, dir ; /∗ Result of comparison between item and p. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Find BST node to delete by merging 46 〉
〈Step 2: Delete BST node by merging 47 〉
〈Step 3: Finish up after BST deletion by merging 48 〉
return (void ∗) item;

}
First we search for the node to delete, storing it as p and its parent as q :

§46 〈Step 1: Find BST node to delete by merging 46 〉 ≡
p = (struct bst node ∗) &tree→bst root ;
for (cmp = −1; cmp != 0; cmp = tree→bst compare (item, p→bst data, tree→bst param)) {

dir = cmp > 0;
q = p;
p = p→bst link [dir];
if (p == NULL)

return NULL;
}
This code is included in §45.

The actual deletion process is not as simple. We handle specially the case where p
has no right child. This is unfortunate for uniformity, but simplifies the rest of the code
considerably. The main case starts off with a loop on variable r to build a stack of the nodes
in the right subtree of p that will need to be rotated. After the loop, r is the minimum value
in p’s right subtree. This will be the new root of the merged subtrees after the rotations,
so we set r as q ’s child on the appropriate side and r ’s left child as p’s former left child.
After that the only remaining task is the rotations themselves, so we perform them and
we’re done:

§47 〈Step 2: Delete BST node by merging 47 〉 ≡
if (p→bst link [1] != NULL) {

struct bst node ∗pa[BST_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[BST_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k = 0; /∗ Stack height. ∗/
struct bst node ∗r ; /∗ Iterator; final value is minimum node in subtree. ∗/
for (r = p→bst link [1]; r→bst link [0] != NULL; r = r→bst link [0]) {

if (k >= BST_MAX_HEIGHT) {
bst balance (tree);
return bst delete (tree, item);

}
pa[k] = r ;
da[k++] = 0;

}
q→bst link [dir] = r ;
r→bst link [0] = p→bst link [0];
for (; k > 0; k−−) {

Chapter 4: Binary Search Trees 45

struct bst node ∗y = pa[k − 1];
struct bst node ∗x = y→bst link [0];
y→bst link [0] = x→bst link [1];
x→bst link [1] = y ;
if (k > 1)

pa[k − 2]→bst link [da[k − 2]] = x ;
}

}
else q→bst link [dir] = p→bst link [0];

This code is included in §45.

Finally, there’s a bit of obligatory bookkeeping:

§48 〈Step 3: Finish up after BST deletion by merging 48 〉 ≡
item = p→bst data;
tree→bst alloc→libavl free (tree→bst alloc, p);
tree→bst count−−;
tree→bst generation++;

This code is included in §45.

See also: [Sedgewick 1998], section 12.9.

4.9 Traversal

After we’ve been manipulating a binary search tree for a while, we will want to know
what items are in it. The process of enumerating the items in a binary search tree is called
traversal. Libavl provides the bst t ∗ functions for a particular kind of traversal called
inorder traversal, so-called because items are enumerated in sorted order.

In this section we’ll implement three algorithms for traversal. Each of these algorithms is
based on and in some way improves upon the previous algorithm. The final implementation
is the one used in Libavl, so we will implement all of the bst t ∗ functions for it.

Before we start looking at particular algorithms, let’s consider some criteria for evaluating
traversal algorithms. The following are not the only criteria that could be used, but they
are indeed important:1

complexity
Is it difficult to describe or to correctly implement the algorithm? Complex
algorithms also tend to take more code than simple ones.

efficiency Does the algorithm make good use of time and memory? The ideal traversal
algorithm would require time proportional to the number of nodes traversed
and a constant amount of space. In this chapter we will meet this ideal time
criterion and come close on the space criterion for the average case. In future
chapters we will be able to do better even in the worst case.

1 Some of these terms are not generic BST vocabulary. Rather, they have been adopted for these particular
uses in this text. You can consider the above to be our working definitions of these terms.

46 GNU libavl 2.0.1

convenience
Is it easy to integrate the traversal functions into other code? Callback functions
are not as easy to use as other methods that can be used from for loops (see
Section 4.9.2.1 [Improving Convenience], page 50).

reliability Are there pathological cases where the algorithm breaks down? If so, is it
possible to fix these problems using additional time or space?

generality Does the algorithm only allow iteration in a single direction? Can we begin
traversal at an arbitrary node, or just at the least or greatest node?

resilience If the tree is modified during a traversal, is it possible to continue traversal, or
does the modification invalidate the traverser?

The first algorithm we will consider uses recursion. This algorithm is worthwhile pri-
marily for its simplicity. In C, such an algorithm cannot be made as efficient, convenient,
or general as other algorithms without unacceptable compromises. It is possible to make it
both reliable and resilient, but we won’t bother because of its other drawbacks.

We arrive at our second algorithm through a literal transformation of the recursion in the
first algorithm into iteration. The use of iteration lets us improve the algorithm’s memory
efficiency, and, on many machines, its time efficiency as well. The iterative algorithm also
lets us improve the convenience of using the traverser. We could also add reliability and
resilience to an implementation of this algorithm, but we’ll save that for later. The only
problem with this algorithm, in fact, lies in its generality: it works best for moving only in
one direction and starting from the least or greatest node.

The importance of generality is what draws us to the third algorithm. This algorithm
is based on ideas from the previous iterative algorithm along with some simple observa-
tions. This algorithm is no more complex than the previous one, but it is more general,
allowing easily for iteration in either direction starting anywhere in the tree. This is the
algorithm used in Libavl, so we build an efficient, convenient, reliable, general, resilient
implementation.

4.9.1 Traversal by Recursion

To figure out how to traverse a binary search tree in inorder, think about a BST’s
structure. A BST consists of a root, a left subtree, and right subtree. All the items in the
left subtree have smaller values than the root and all the items in the right subtree have
larger values than the root.

That’s good enough right there: we can traverse a BST in inorder by dealing with its
left subtree, then doing with the root whatever it is we want to do with each node in the
tree (generically, visit the root node), then dealing with its right subtree. But how do we
deal with the subtrees? Well, they’re BSTs too, so we can do the same thing: traverse its
left subtree, then visit its root, then traverse its right subtree, and so on. Eventually the
process terminates because at some point the subtrees are null pointers, and nothing needs
to be done to traverse an empty tree.

Writing the traversal function is almost trivial. We use bst item func to visit a node
(see Section 2.4 [Item and Copy Functions], page 10):

§49 〈Recursive traversal of BST 49 〉 ≡

Chapter 4: Binary Search Trees 47

static void traverse recursive (struct bst node ∗node, bst item func ∗action, void ∗param) {
if (node != NULL) {

traverse recursive (node→bst link [0], action, param);
action (node→bst data, param);
traverse recursive (node→bst link [1], action, param);

}
}
See also §50.

We also want a wrapper function to insulate callers from the existence of individual tree
nodes:

§50 〈Recursive traversal of BST 49 〉 +≡
void walk (struct bst table ∗tree, bst item func ∗action, void ∗param) {

assert (tree != NULL && action != NULL);
traverse recursive (tree→bst root , action, param);

}
See also: [Knuth 1997], section 2.3.1; [Cormen 1990], section 13.1; [Sedgewick 1998], pro-
gram 12.8.

Exercises:

1. Instead of checking for a null node at the top of traverse recursive(), would it be better
to check before calling in each place that the function is called? Why or why not?

2. Some languages, such as Pascal, support the concept of nested functions, that is, func-
tions within functions, but C does not. Some algorithms, including recursive tree traversal,
can be expressed much more naturally with this feature. Rewrite walk(), in a hypothetical
C-like language that supports nested functions, as a function that calls an inner, recursively
defined function. The nested function should only take a single parameter. (The GNU C
compiler supports nested functions as a language extension, so you may want to use it to
check your code.)

4.9.2 Traversal by Iteration

The recursive approach of the previous section is one valid way to traverse a binary
search tree in sorted order. This method has the advantages of being simple and “obviously
correct”. But it does have problems with efficiency, because each call to traverse recursive()
receives its own duplicate copies of arguments action and param, and with convenience,
because writing a new callback function for each traversal is unpleasant. It has other
problems, too, as already discussed, but these are the ones to be addressed immediately.

Unfortunately, neither problem can be solved acceptably in C using a recursive method,
the first because the traversal function has to somehow know the action function and the
parameter to pass to it, and the second because there is simply no way to jump out of and
then back into recursive calls in C.2 Our only option is to use an algorithm that does not
involve recursion.

2 This is possible in some other languages, such as Scheme, that support “coroutines” as well as subroutines.

48 GNU libavl 2.0.1

The simplest way to eliminate recursion is by a literal conversion of the recursion to
iteration. This is the topic of this section. Later, we will consider a slightly different, and
in some ways superior, iterative solution.

Converting recursion into iteration is an interesting problem. There are two main ways
to do it:

tail recursion elimination
If a recursive call is the last action taken in a function, then it is equivalent to a
goto back to the beginning of the function, possibly after modifying argument
values. (If the function has a return value then the recursive call must be a
return statement returning the value received from the nested call.) This form
of recursion is called tail recursion.

save-and-restore recursion elimination
In effect, a recursive function call saves a copy of argument values and local
variables, modifies the arguments, then executes a goto to the beginning of the
function. Accordingly, the return from the nested call is equivalent to restoring
the saved arguments and local variables, then executing a goto back to the point
where the call was made.

We can make use of both of these rules in converting traverse recursive() to iterative
form. First, does traverse recursive() ever call itself as its last action? The answer is yes,
so we can convert that to an assignment plus a goto statement:

§51 〈 Iterative traversal of BST, take 1 51 〉 ≡
static void traverse iterative (struct bst node ∗node, bst item func ∗action, void ∗param) {
start :

if (node != NULL) {
traverse iterative (node→bst link [0], action, param);
action (node→bst data, param);
node = node→bst link [1];
goto start ;

}
}

Sensible programmers are not fond of goto. Fortunately, it is easy to eliminate by
rephrasing in terms of a while loop:

§52 〈 Iterative traversal of BST, take 2 52 〉 ≡
static void traverse iterative (struct bst node ∗node, bst item func ∗action, void ∗param) {

while (node != NULL) {
traverse iterative (node→bst link [0], action, param);
action (node→bst data, param);
node = node→bst link [1];

}
}

This still leaves another recursive call, one that is not tail recursive. This one must be
eliminated by saving and restoring values. A stack is ideal for this purpose. For now, we
use a stack of fixed size BST_MAX_HEIGHT and deal with stack overflow by aborting. Later,
we’ll handle overflow more gracefully. Here’s the code:

Chapter 4: Binary Search Trees 49

§53 〈 Iterative traversal of BST, take 3 53 〉 ≡
static void traverse iterative (struct bst node ∗node, bst item func ∗action, void ∗param) {

struct bst node ∗stack [BST_MAX_HEIGHT];
size t height = 0;

start :
while (node != NULL) {

if (height >= BST_MAX_HEIGHT) {
fprintf (stderr , "treeÃtooÃdeep\n");
exit (EXIT_FAILURE);

}
stack [height++] = node;
node = node→bst link [0];
goto start ;

resume:
action (node→bst data, param);
node = node→bst link [1];

}
if (height > 0) {

node = stack [−−height];
goto resume;

}
}

This code, an ugly mash of statements, is a prime example of why goto statements are
discouraged, but its relationship with the earlier code is clear. To make it acceptable for real
use, we must rephrase it. First, we can eliminate label resume by recognizing that it can
only be reached from the corresponding goto statement, then moving its code appropriately:

§54 〈 Iterative traversal of BST, take 4 54 〉 ≡
static void traverse iterative (struct bst node ∗node, bst item func ∗action, void ∗param) {

struct bst node ∗stack [BST_MAX_HEIGHT];
size t height = 0;

start :
while (node != NULL) {

if (height >= BST_MAX_HEIGHT) {
fprintf (stderr , "treeÃtooÃdeep\n");
exit (EXIT_FAILURE);

}
stack [height++] = node;
node = node→bst link [0];
goto start ;

}
if (height > 0) {

node = stack [−−height];
action (node→bst data, param);
node = node→bst link [1];
goto start ;

50 GNU libavl 2.0.1

}
}

The first remaining goto statement can be eliminated without any other change, because
it is redundant; the second, by enclosing the whole function body in an “infinite loop”:

§55 〈 Iterative traversal of BST, take 5 55 〉 ≡
static void traverse iterative (struct bst node ∗node, bst item func ∗action, void ∗param) {

struct bst node ∗stack [BST_MAX_HEIGHT];
size t height = 0;
for (;;) {

while (node != NULL) {
if (height >= BST_MAX_HEIGHT) {

fprintf (stderr , "treeÃtooÃdeep\n");
exit (EXIT_FAILURE);

}
stack [height++] = node;
node = node→bst link [0];

}
if (height == 0)

break;
node = stack [−−height];
action (node→bst data, param);
node = node→bst link [1];

}
}

This initial iterative version takes care of the efficiency problem.

Exercises:

1. Function traverse iterative() relies on stack [], a stack of nodes yet to be visited, which
as allocated can hold up to BST_MAX_HEIGHT nodes. Consider the following questions con-
cerning stack []:
a. What is the maximum height this stack will attain in traversing a binary search tree

containing n nodes, if the binary tree has minimum possible height?
b. What is the maximum height this stack can attain in traversing any binary tree of n

nodes? The minimum height?
c. Under what circumstances is it acceptable to use a fixed-size stack as in the example

code?
d. Rewrite traverse iterative() to dynamically expand stack [] in case of overflow.
e. Does traverse recursive() also have potential for running out of “stack” or “memory”?

If so, more or less than traverse iterative() as modified by the previous part?

4.9.2.1 Improving Convenience

Now we can work on improving the convenience of our traversal function. But, first,
perhaps it’s worthwhile to demonstrate how inconvenient it really can be to use walk(),
regardless of how it’s implemented internally.

Chapter 4: Binary Search Trees 51

Suppose that we have a BST of character strings and, for whatever reason, want to know
the total length of all the strings in it. We could do it like this using walk():

§56 〈Summing string lengths with walk() 56 〉 ≡
static void process node (void ∗data, void ∗param) {

const char ∗string = data;
size t ∗total = param;
∗total += strlen (string);

}
size t total length (struct bst table ∗tree) {

size t total = 0;
walk (tree, process node, &total);
return total ;

}
With the functions first item() and next item() that we’ll write in this section, we can
rewrite these functions as the single function below:

§57 〈Summing string lengths with next item() 57 〉 ≡
size t total length (struct bst table ∗tree) {

struct traverser t ;
const char ∗string ;
size t total = 0;
for (string = first item (tree, &t); string != NULL; string = next item (&t))

total += strlen (string);
return total ;

}
You’re free to make your own assessment, of course, but many programmers prefer

the latter because of its greater brevity and fewer “unsafe” conversions to and from void
pointers.

Now to actually write the code. Our task is to modify traverse iterative() so that,
instead of calling action, it returns node→bst data. But first, some infrastructure. We
define a structure to contain the state of the traversal, equivalent to the relevant argument
and local variables in traverse iterative(). To emphasize that this is not our final version of
this structure or the related code, we will call it struct traverser, without any name prefix:

§58 〈 Iterative traversal of BST, take 6 58 〉 ≡
struct traverser {

struct bst table ∗table; /∗ Tree being traversed. ∗/
struct bst node ∗node; /∗ Current node in tree. ∗/
struct bst node ∗stack [BST_MAX_HEIGHT]; /∗ Parent nodes to revisit. ∗/
size t height ; /∗ Number of nodes in stack . ∗/

};
See also §59 and §60.

Function first item() just initializes a struct traverser and returns the first item in the
tree, deferring most of its work to next item():

§59 〈 Iterative traversal of BST, take 6 58 〉 +≡
/∗ Initializes trav for tree.

52 GNU libavl 2.0.1

Returns data item in tree with the smallest value, or NULL if tree is empty.
In the former case, next item() may be called with trav
to retrieve additional data items. ∗/

void ∗first item (struct bst table ∗tree, struct traverser ∗trav) {
assert (tree != NULL && trav != NULL);
trav→table = tree;
trav→node = tree→bst root ;
trav→height = 0;
return next item (trav);

}
Function next item() is, for the most part, a simple modification of traverse iterative():

§60 〈 Iterative traversal of BST, take 6 58 〉 +≡
/∗ Returns the next data item in inorder within the tree being traversed with trav ,

or if there are no more data items returns NULL.
In the former case next item() may be called again to retrieve the next item. ∗/

void ∗next item (struct traverser ∗trav) {
struct bst node ∗node;
assert (trav != NULL);
node = trav→node;
while (node != NULL) {

if (trav→height >= BST_MAX_HEIGHT) {
fprintf (stderr , "treeÃtooÃdeep\n");
exit (EXIT_FAILURE);

}
trav→stack [trav→height++] = node;
node = node→bst link [0];

}
if (trav→height == 0)

return NULL;
node = trav→stack [−−trav→height];
trav→node = node→bst link [1];
return node→bst data;

}
See also: [Knuth 1997], algorithm 2.3.1T; [Knuth 1992], p. 50–54, section “Recursion Elim-
ination” within article “Structured Programming with go to statements”.

Exercises:

1. Make next item() reliable by providing alternate code to execute on stack overflow. This
code will work by calling bst balance() to “balance” the tree, reducing its height such that
it can be traversed with the small stack that we use. We will develop bst balance() later.
For now, consider it a “black box” that simply needs to be invoked with the tree to balance
as an argument. Don’t forget to adjust the traverser structure so that later calls will work
properly, too.

2. Without modifying next item() or first item(), can a function prev item() be written
that will move to and return the previous item in the tree in inorder?

Chapter 4: Binary Search Trees 53

4.9.3 Better Iterative Traversal

We have developed an efficient, convenient function for traversing a binary tree. In the
exercises, we made it reliable, and it is possible to make it resilient as well. But its algorithm
makes it difficult to add generality. In order to do that in a practical way, we will have to
use a new algorithm.

Let us start by considering how to understand how to find the successor or predecessor of
any node in general, as opposed to just blindly transforming code as we did in the previous
section. Back when we wrote bst delete(), we already solved half of the problem, by figuring
out how to find the successor of a node that has a right child: take the least-valued node
in the right subtree of the node (see [Deletion Case 3], page 40).

The other half is the successor of a node that doesn’t have a right child. Take a look at
the code for one of the previous traversal functions—recursive or iterative, whichever you
better understand—and mentally work out the relationship between the current node and
its successor for a node without a right child. What happens is that we move up the tree,
from a node to its parent, one node at a time, until it turns out that we moved up to the
right (as opposed to up to the left) and that is the successor node. Think of it this way: if
we move up to the left, then the node we started at has a lesser value than where we ended
up, so we’ve already visited it, but if we move up to the right, then we’re moving to a node
with a greater value, so we’ve found the successor.

Using these instructions, we can find the predecessor of a node, too, just by exchanging
“left” and “right”. This suggests that all we have to do in order to generalize our traversal
function is to keep track of all the nodes above the current node, not just the ones that are
up and to the left. This in turn suggests our final implementation of struct bst traverser,
with appropriate comments:

§61 〈BST traverser structure 61 〉 ≡
/∗ BST traverser structure. ∗/
struct bst traverser {

struct bst table ∗bst table; /∗ Tree being traversed. ∗/
struct bst node ∗bst node; /∗ Current node in tree. ∗/
struct bst node ∗bst stack [BST_MAX_HEIGHT]; /∗ All the nodes above bst node. ∗/
size t bst height ; /∗ Number of nodes in bst parent . ∗/
unsigned long bst generation; /∗ Generation number. ∗/

};
This code is included in §24, §142, and §192.

Because user code is expected to declare actual instances of struct bst traverser, struct
bst traverser must be defined in 〈 bst.h 24 〉 and therefore all of its member names are
prefixed by bst for safety.

The only surprise in struct bst traverser is member bst generation, the traverser’s gener-
ation number. This member is set equal to its namesake in struct bst table when a traverser
is initialized. After that, the two values are compared whenever the stack of parent pointers
must be accessed. Any change in the tree that could disturb the action of a traverser will
cause their generation numbers to differ, which in turn triggers an update to the stack. This
is what allows this final implementation to be resilient.

We need a utility function to actually update the stack of parent pointers when differing
generation numbers are detected. This is easy to write:

54 GNU libavl 2.0.1

§62 〈BST traverser refresher 62 〉 ≡
/∗ Refreshes the stack of parent pointers in trav

and updates its generation number. ∗/
static void trav refresh (struct bst traverser ∗trav) {

assert (trav != NULL);

trav→bst generation = trav→bst table→bst generation;

if (trav→bst node != NULL) {
bst comparison func ∗cmp = trav→bst table→bst compare;
void ∗param = trav→bst table→bst param;
struct bst node ∗node = trav→bst node;
struct bst node ∗i ;
trav→bst height = 0;
for (i = trav→bst table→bst root ; i != node;) {

assert (trav→bst height < BST_MAX_HEIGHT);
assert (i != NULL);

trav→bst stack [trav→bst height++] = i ;
i = i→bst link [cmp (node→bst data, i→bst data, param) > 0];

}
}

}
This code is included in §63 and §178.

The following sections will implement all of the traverser functions bst t ∗(). See Sec-
tion 2.10 [Traversers], page 15, for descriptions of the purpose of each of these functions.

The traversal functions are collected together into 〈BST traversal functions 63 〉:
§63 〈BST traversal functions 63 〉 ≡

〈BST traverser refresher 62 〉
〈BST traverser null initializer 64 〉
〈BST traverser least-item initializer 65 〉
〈BST traverser greatest-item initializer 66 〉
〈BST traverser search initializer 67 〉
〈BST traverser insertion initializer 68 〉
〈BST traverser copy initializer 69 〉
〈BST traverser advance function 70 〉
〈BST traverser back up function 73 〉
〈BST traverser current item function 74 〉
〈BST traverser replacement function 75 〉
This code is included in §29.

Exercises:

1. The bst probe() function doesn’t change the tree’s generation number. Why not?

*2. The main loop in trav refresh() contains the assertion

assert (trav→bst height < BST_MAX_HEIGHT);

Prove that this assertion is always true.

Chapter 4: Binary Search Trees 55

3. In trav refresh(), it is tempting to avoid calls to the user-supplied comparison function
by comparing the nodes on the stack to the current state of the tree; e.g., move up the
stack, starting from the bottom, and for each node verify that it is a child of the previous
one on the stack, falling back to the general algorithm at the first mismatch. Why won’t
this work?

4.9.3.1 Starting at the Null Node

The trav t init() function just initializes a traverser to the null item, indicated by a null
pointer for bst node.

§64 〈BST traverser null initializer 64 〉 ≡
void bst t init (struct bst traverser ∗trav , struct bst table ∗tree) {

trav→bst table = tree;
trav→bst node = NULL;
trav→bst height = 0;
trav→bst generation = tree→bst generation;

}
This code is included in §63 and §178.

4.9.3.2 Starting at the First Node

To initialize a traverser to start at the least valued node, we simply descend from the
root as far down and left as possible, recording the parent pointers on the stack as we go.
If the stack overflows, then we balance the tree and start over.

§65 〈BST traverser least-item initializer 65 〉 ≡
void ∗bst t first (struct bst traverser ∗trav , struct bst table ∗tree) {

struct bst node ∗x ;
assert (tree != NULL && trav != NULL);
trav→bst table = tree;
trav→bst height = 0;
trav→bst generation = tree→bst generation;
x = tree→bst root ;
if (x != NULL)

while (x→bst link [0] != NULL) {
if (trav→bst height >= BST_MAX_HEIGHT) {

bst balance (tree);
return bst t first (trav , tree);

}
trav→bst stack [trav→bst height++] = x ;
x = x→bst link [0];

}
trav→bst node = x ;
return x != NULL ? x→bst data : NULL;

}
This code is included in §63.

56 GNU libavl 2.0.1

Exercises:

*1. Show that bst t first() will never make more than one recursive call to itself at a time.

4.9.3.3 Starting at the Last Node

The code to start from the greatest node in the tree is analogous to that for starting
from the least node. The only difference is that we descend to the right instead:

§66 〈BST traverser greatest-item initializer 66 〉 ≡
void ∗bst t last (struct bst traverser ∗trav , struct bst table ∗tree) {

struct bst node ∗x ;
assert (tree != NULL && trav != NULL);
trav→bst table = tree;
trav→bst height = 0;
trav→bst generation = tree→bst generation;
x = tree→bst root ;
if (x != NULL)

while (x→bst link [1] != NULL) {
if (trav→bst height >= BST_MAX_HEIGHT) {

bst balance (tree);
return bst t last (trav , tree);

}
trav→bst stack [trav→bst height++] = x ;
x = x→bst link [1];

}
trav→bst node = x ;
return x != NULL ? x→bst data : NULL;

}
This code is included in §63.

4.9.3.4 Starting at a Found Node

Sometimes it is convenient to begin a traversal at a particular item in a tree. This
function works in the same was as bst find(), but records parent pointers in the traverser
structure as it descends the tree.

§67 〈BST traverser search initializer 67 〉 ≡
void ∗bst t find (struct bst traverser ∗trav , struct bst table ∗tree, void ∗item) {

struct bst node ∗p, ∗q ;
assert (trav != NULL && tree != NULL && item != NULL);
trav→bst table = tree;
trav→bst height = 0;
trav→bst generation = tree→bst generation;
for (p = tree→bst root ; p != NULL; p = q) {

int cmp = tree→bst compare (item, p→bst data, tree→bst param);
if (cmp < 0) q = p→bst link [0];
else if (cmp > 0) q = p→bst link [1];

Chapter 4: Binary Search Trees 57

else /∗ cmp == 0 ∗/ {
trav→bst node = p;
return p→bst data;

}
if (trav→bst height >= BST_MAX_HEIGHT) {

bst balance (trav→bst table);
return bst t find (trav , tree, item);

}
trav→bst stack [trav→bst height++] = p;

}
trav→bst height = 0;
trav→bst node = NULL;
return NULL;

}
This code is included in §63.

4.9.3.5 Starting at an Inserted Node

Another operation that can be useful is to insert a new node and construct a traverser
to the inserted node in a single operation. The following code does this:

§68 〈BST traverser insertion initializer 68 〉 ≡
void ∗bst t insert (struct bst traverser ∗trav , struct bst table ∗tree, void ∗item) {

struct bst node ∗∗q ;
assert (tree != NULL && item != NULL);
trav→bst table = tree;
trav→bst height = 0;
q = &tree→bst root ;
while (∗q != NULL) {

int cmp = tree→bst compare (item, (∗q)→bst data, tree→bst param);
if (cmp == 0) {

trav→bst node = ∗q ;
trav→bst generation = tree→bst generation;
return (∗q)→bst data;

}
if (trav→bst height >= BST_MAX_HEIGHT) {

bst balance (tree);
return bst t insert (trav , tree, item);

}
trav→bst stack [trav→bst height++] = ∗q ;
q = &(∗q)→bst link [cmp > 0];

}
trav→bst node = ∗q = tree→bst alloc→libavl malloc (tree→bst alloc, sizeof ∗∗q);
if (∗q == NULL) {

trav→bst node = NULL;
trav→bst generation = tree→bst generation;

58 GNU libavl 2.0.1

return NULL;
}
(∗q)→bst link [0] = (∗q)→bst link [1] = NULL;
(∗q)→bst data = item;
tree→bst count++;
trav→bst generation = tree→bst generation;
return (∗q)→bst data;

}
This code is included in §63.

4.9.3.6 Initialization by Copying

This function copies one traverser to another. It only copies the stack of parent pointers
if they are up-to-date:

§69 〈BST traverser copy initializer 69 〉 ≡
void ∗bst t copy (struct bst traverser ∗trav , const struct bst traverser ∗src) {

assert (trav != NULL && src != NULL);
if (trav != src) {

trav→bst table = src→bst table;
trav→bst node = src→bst node;
trav→bst generation = src→bst generation;
if (trav→bst generation == trav→bst table→bst generation) {

trav→bst height = src→bst height ;
memcpy (trav→bst stack , (const void ∗) src→bst stack ,

sizeof ∗trav→bst stack ∗ trav→bst height);
}

}
return trav→bst node != NULL ? trav→bst node→bst data : NULL;

}
This code is included in §63 and §178.

Exercises:

1. Without the check that trav != src before copying src into trav , what might happen?

4.9.3.7 Advancing to the Next Node

The algorithm of bst t next(), the function for finding a successor, divides neatly into
three cases. Two of these are the ones that we discussed earlier in the introduction to this
kind of traverser (see Section 4.9.3 [Better Iterative Traversal], page 53). The third case
occurs when the last node returned was NULL, in which case we return the least node in the
table, in accordance with the semantics for Libavl tables. The function outline is this:

§70 〈BST traverser advance function 70 〉 ≡
void ∗bst t next (struct bst traverser ∗trav) {

struct bst node ∗x ;
assert (trav != NULL);

Chapter 4: Binary Search Trees 59

if (trav→bst generation != trav→bst table→bst generation)
trav refresh (trav);

x = trav→bst node;
if (x == NULL) {

return bst t first (trav , trav→bst table);
} else if (x→bst link [1] != NULL) {

〈Handle case where x has a right child 71 〉
} else {

〈Handle case where x has no right child 72 〉
}
trav→bst node = x ;
return x→bst data;

}
This code is included in §63.

The case where the current node has a right child is accomplished by stepping to the
right, then to the left until we can’t go any farther, as discussed in detail earlier. The only
difference is that we must check for stack overflow. When stack overflow does occur, we
recover by calling trav balance(), then restarting bst t next() using a tail-recursive call. The
tail recursion will never happen more than once, because trav balance() ensures that the
tree’s height is small enough that the stack cannot overflow again:

§71 〈Handle case where x has a right child 71 〉 ≡
if (trav→bst height >= BST_MAX_HEIGHT) {

bst balance (trav→bst table);
return bst t next (trav);

}
trav→bst stack [trav→bst height++] = x ;
x = x→bst link [1];
while (x→bst link [0] != NULL) {

if (trav→bst height >= BST_MAX_HEIGHT) {
bst balance (trav→bst table);
return bst t next (trav);

}
trav→bst stack [trav→bst height++] = x ;
x = x→bst link [0];

}
This code is included in §70.

In the case where the current node has no right child, we move upward in the tree
based on the stack of parent pointers that we saved, as described before. When the stack
underflows, we know that we’ve run out of nodes in the tree:

§72 〈Handle case where x has no right child 72 〉 ≡
struct bst node ∗y ;
do {

if (trav→bst height == 0) {
trav→bst node = NULL;

60 GNU libavl 2.0.1

return NULL;
}
y = x ;
x = trav→bst stack [−−trav→bst height];

} while (y == x→bst link [1]);
This code is included in §70.

4.9.3.8 Backing Up to the Previous Node

Moving to the previous node is analogous to moving to the next node. The only differ-
ence, in fact, is that directions are reversed from left to right.

§73 〈BST traverser back up function 73 〉 ≡
void ∗bst t prev (struct bst traverser ∗trav) {

struct bst node ∗x ;
assert (trav != NULL);
if (trav→bst generation != trav→bst table→bst generation)

trav refresh (trav);
x = trav→bst node;
if (x == NULL) {

return bst t last (trav , trav→bst table);
} else if (x→bst link [0] != NULL) {

if (trav→bst height >= BST_MAX_HEIGHT) {
bst balance (trav→bst table);
return bst t prev (trav);

}
trav→bst stack [trav→bst height++] = x ;
x = x→bst link [0];
while (x→bst link [1] != NULL) {

if (trav→bst height >= BST_MAX_HEIGHT) {
bst balance (trav→bst table);
return bst t prev (trav);

}
trav→bst stack [trav→bst height++] = x ;
x = x→bst link [1];

}
} else {

struct bst node ∗y ;
do {

if (trav→bst height == 0) {
trav→bst node = NULL;
return NULL;

}
y = x ;
x = trav→bst stack [−−trav→bst height];

} while (y == x→bst link [0]);

Chapter 4: Binary Search Trees 61

}
trav→bst node = x ;
return x→bst data;

}
This code is included in §63.

4.9.3.9 Getting the Current Item

§74 〈BST traverser current item function 74 〉 ≡
void ∗bst t cur (struct bst traverser ∗trav) {

assert (trav != NULL);
return trav→bst node != NULL ? trav→bst node→bst data : NULL;

}
This code is included in §63, §178, §268, §395, §502, and §546.

4.9.3.10 Replacing the Current Item

§75 〈BST traverser replacement function 75 〉 ≡
void ∗bst t replace (struct bst traverser ∗trav , void ∗new) {

void ∗old ;
assert (trav != NULL && trav→bst node != NULL && new != NULL);
old = trav→bst node→bst data;
trav→bst node→bst data = new ;
return old ;

}
This code is included in §63, §178, §268, §395, §502, and §546.

4.10 Copying

In this section, we’re going to write function bst copy() to make a copy of a binary tree.
This is the most complicated function of all those needed for BST functionality, so pay
careful attention as we proceed.

4.10.1 Recursive Copying

The “obvious” way to copy a binary tree is recursive. Here’s a basic recursive copy,
hard-wired to allocate memory with malloc() for simplicity:

§76 〈Recursive copy of BST, take 1 76 〉 ≡
/∗ Makes and returns a new copy of tree rooted at x . ∗/
static struct bst node ∗bst copy recursive 1 (struct bst node ∗x) {

struct bst node ∗y ;
if (x == NULL)

return NULL;
y = malloc (sizeof ∗y);
if (y == NULL)

62 GNU libavl 2.0.1

return NULL;

y→bst data = x→bst data;
y→bst link [0] = bst copy recursive 1 (x→bst link [0]);
y→bst link [1] = bst copy recursive 1 (x→bst link [1]);
return y ;

}
But, again, it would be nice to rewrite this iteratively, both because the iterative version

is likely to be faster and for the sheer mental exercise of it. Recall, from our earlier discussion
of inorder traversal, that tail recursion (recursion where a function calls itself as its last
action) is easier to convert to iteration than other types. Unfortunately, neither of the
recursive calls above are tail-recursive.

Fortunately, we can rewrite it so that it is, if we change the way we allocate data:

§77 〈Recursive copy of BST, take 2 77 〉 ≡
/∗ Copies tree rooted at x to y , which latter is allocated but not yet initialized. ∗/
static void bst copy recursive 2 (struct bst node ∗x , struct bst node ∗y) {

y→bst data = x→bst data;

if (x→bst link [0] != NULL) {
y→bst link [0] = malloc (sizeof ∗y→bst link [0]);
bst copy recursive 2 (x→bst link [0], y→bst link [0]);

}
else y→bst link [0] = NULL;

if (x→bst link [1] != NULL) {
y→bst link [1] = malloc (sizeof ∗y→bst link [1]);
bst copy recursive 2 (x→bst link [1], y→bst link [1]);

}
else y→bst link [1] = NULL;

}
Exercises:

1. When malloc() returns a null pointer, bst copy recursive 1 () fails “silently”, that is,
without notifying its caller about the error, and the output is a partial copy of the original
tree. Without removing the recursion, implement two different ways to propagate such
errors upward to the function’s caller:

a. Change the function’s prototype to:

static int bst robust copy recursive 1 (struct bst node ∗, struct bst node ∗∗);
b. Without changing the function’s prototype. (Hint: use a statically declared struct

bst node).

In each case make sure that any allocated memory is safely freed if an allocation error
occurs.

2. bst copy recursive 2 () is even worse than bst copy recursive 1 () at handling allocation
failure. It actually invokes undefined behavior when an allocation fails. Fix this, changing
it to return an int, with nonzero return values indicating success. Be careful not to leak
memory.

Chapter 4: Binary Search Trees 63

4.10.2 Iterative Copying

Now we can factor out the recursion, starting with the tail recursion. This process is
very similar to what we did with the traversal code, so the details are left for Exercise 1.
Let’s look at the results part by part:

§78 〈 Iterative copy of BST 78 〉 ≡
/∗ Copies org to a newly created tree, which is returned. ∗/
struct bst table ∗bst copy iterative (const struct bst table ∗org) {

struct bst node ∗stack [2 ∗ (BST_MAX_HEIGHT + 1)]; /∗ Stack. ∗/
int height = 0; /∗ Stack height. ∗/

See also §79, §80, and§81.

This time, our stack will have two pointers added to it at a time, one from the original
tree and one from the copy. Thus, the stack needs to be twice as big. In addition, we’ll
see below that there’ll be an extra item on the stack representing the pointer to the tree’s
root, so our stack needs room for an extra pair of items, which is the reason for the “+ 1”
in stack []’s size.

§79 〈 Iterative copy of BST 78 〉 +≡
struct bst table ∗new ; /∗ New tree. ∗/
const struct bst node ∗x ; /∗ Node currently being copied. ∗/
struct bst node ∗y ; /∗ New node being copied from x . ∗/
new = bst create (org→bst compare, org→bst param, org→bst alloc);
new→bst count = org→bst count ;
if (new→bst count == 0)

return new ;
x = (const struct bst node ∗) &org→bst root ;
y = (struct bst node ∗) &new→bst root ;

This is the same kind of “dirty trick” already described in Exercise 4.7-1.
§80 〈 Iterative copy of BST 78 〉 +≡

for (;;) {
while (x→bst link [0] != NULL) {

y→bst link [0] = org→bst alloc→libavl malloc (org→bst alloc,
sizeof ∗y→bst link [0]);

stack [height++] = (struct bst node ∗) x ;
stack [height++] = y ;
x = x→bst link [0];
y = y→bst link [0];

}
y→bst link [0] = NULL;

This code moves x down and to the left in the tree until it runs out of nodes, allocating
space in the new tree for left children and pushing nodes from the original tree and the copy
onto the stack as it goes. The cast on x suppresses a warning or error due to x , a pointer
to a const structure, being stored into a non-constant pointer in stack []. We won’t ever try
to store into the pointer that we store in there, so this is legitimate.

We’ve switched from using malloc() to using the allocation function provided by the
user. This is easy now because we have the tree structure to work with. To do this earlier,

64 GNU libavl 2.0.1

we would have had to somehow pass the tree structure to each recursive call of the copy
function, wasting time and space.

§81 〈 Iterative copy of BST 78 〉 +≡
for (;;) {

y→bst data = x→bst data;
if (x→bst link [1] != NULL) {

y→bst link [1] = org→bst alloc→libavl malloc (org→bst alloc,
sizeof ∗y→bst link [1]);

x = x→bst link [1];
y = y→bst link [1];
break;

}
else y→bst link [1] = NULL;
if (height <= 2)

return new ;
y = stack [−−height];
x = stack [−−height];

}
}

}
We do not pop the bottommost pair of items off the stack because these items contain

the fake struct bst node pointer that is actually the address of bst root . When we get down
to these items, we’re done copying and can return the new tree.

See also: [Knuth 1997], algorithm 2.3.1C; [ISO 1990], section 6.5.2.1.

Exercises:

1. Suggest a step between bst copy recursive 2 () and bst copy iterative().

4.10.3 Error Handling

So far, outside the exercises, we’ve ignored the question of handling memory allocation
errors during copying. In our other routines, we’ve been careful to implement to handle
allocation failures by cleaning up and returning an error indication to the caller. Now we
will apply this same policy to tree copying, as Libavl semantics require (see Section 2.6
[Creation and Destruction], page 12): a memory allocation error causes the partially copied
tree to be destroyed and returns a null pointer to the caller.

This is a little harder to do than recovering after a single operation, because there are
potentially many nodes that have to be freed, and each node might include additional user
data that also has to be freed. The new BST might have as-yet-uninitialized pointer fields
as well, and we must be careful to avoid reading from these fields as we destroy the tree.

We could use a number of strategies to destroy the partially copied tree while avoiding
uninitialized pointers. The strategy that we will actually use is to initialize these pointers
to NULL, then call the general tree destruction routine bst destroy(). We haven’t yet written
bst destroy(), so for now we’ll treat it as a black box that does what we want, even if we
don’t understand how.

Chapter 4: Binary Search Trees 65

Next question: which pointers in the tree are not initialized? The answer is simple:
during the copy, we will not revisit nodes not currently on the stack, so only pointers in the
current node (y) and on the stack can be uninitialized. For its part, depending on what
we’re doing to it, y might not have any of its fields initialized. As for the stack, nodes are
pushed onto it because we have to come back later and build their right subtrees, so we
must set their right child pointers to NULL.

We will need this error recovery code in a number of places, so it is worth making it into
a small helper function:

§82 〈BST copy error helper function 82 〉 ≡
static void copy error recovery (struct bst node ∗∗stack , int height ,

struct bst table ∗new , bst item func ∗destroy) {
assert (stack != NULL && height >= 0 && new != NULL);
for (; height > 2; height −= 2)

stack [height − 1]→bst link [1] = NULL;
bst destroy (new , destroy);

}
This code is included in §83 and §185.

Another problem that can arise in copying a binary tree is stack overflow. We will
handle stack overflow by destroying the partial copy, balancing the original tree, and then
restarting the copy. The balanced tree is guaranteed to have small enough height that it
will not overflow the stack.

The code below for our final version of bst copy() takes three new parameters: two
function pointers and a memory allocator. The meaning of these parameters was explained
earlier (see Section 2.6 [Creation and Destruction], page 12). Their use within the function
should be self-explanatory.

§83 〈BST copy function 83 〉 ≡
〈BST copy error helper function 82 〉
struct bst table ∗bst copy (const struct bst table ∗org , bst copy func ∗copy ,

bst item func ∗destroy , struct libavl allocator ∗allocator) {
struct bst node ∗stack [2 ∗ (BST_MAX_HEIGHT + 1)];
int height = 0;
struct bst table ∗new ;
const struct bst node ∗x ;
struct bst node ∗y ;
assert (org != NULL);
new = bst create (org→bst compare, org→bst param,

allocator != NULL ? allocator : org→bst alloc);
if (new == NULL)

return NULL;
new→bst count = org→bst count ;
if (new→bst count == 0)

return new ;
x = (const struct bst node ∗) &org→bst root ;
y = (struct bst node ∗) &new→bst root ;

66 GNU libavl 2.0.1

for (;;) {
while (x→bst link [0] != NULL) {

if (height >= 2 ∗ (BST_MAX_HEIGHT + 1)) {
y→bst data = NULL;
y→bst link [0] = y→bst link [1] = NULL;
copy error recovery (stack , height , new , destroy);

bst balance ((struct bst table ∗) org);
return bst copy (org , copy , destroy , allocator);

}
y→bst link [0] = new→bst alloc→libavl malloc (new→bst alloc,

sizeof ∗y→bst link [0]);
if (y→bst link [0] == NULL) {

if (y != (struct bst node ∗) &new→bst root) {
y→bst data = NULL;
y→bst link [1] = NULL;

}
copy error recovery (stack , height , new , destroy);
return NULL;

}
stack [height++] = (struct bst node ∗) x ;
stack [height++] = y ;
x = x→bst link [0];
y = y→bst link [0];

}
y→bst link [0] = NULL;

for (;;) {
if (copy == NULL)

y→bst data = x→bst data;
else {

y→bst data = copy (x→bst data, org→bst param);
if (y→bst data == NULL) {

y→bst link [1] = NULL;
copy error recovery (stack , height , new , destroy);
return NULL;

}
}
if (x→bst link [1] != NULL) {

y→bst link [1] = new→bst alloc→libavl malloc (new→bst alloc,
sizeof ∗y→bst link [1]);

if (y→bst link [1] == NULL) {
copy error recovery (stack , height , new , destroy);
return NULL;

}
x = x→bst link [1];
y = y→bst link [1];

Chapter 4: Binary Search Trees 67

break;
}
else y→bst link [1] = NULL;
if (height <= 2)

return new ;
y = stack [−−height];
x = stack [−−height];

}
}

}
This code is included in §29.

4.11 Destruction

Eventually, we’ll want to get rid of the trees we’ve spent all this time constructing. When
this happens, it’s time to destroy them by freeing their memory.

4.11.1 Destruction by Rotation

The method actually used in Libavl for destruction of binary trees is somewhat novel.
This section will cover this method. Later sections will cover more conventional techniques
using recursive or iterative postorder traversal.

To destroy a binary tree, we must visit and free each node. We have already covered one
way to traverse a tree (inorder traversal) and used this technique for traversing and copying
a binary tree. But, both times before, we were subject to both the explicit constraint that
we had to visit the nodes in sorted order and the implicit constraint that we were not to
change the structure of the tree, or at least not to change it for the worse.

Neither of these constraints holds for destruction of a binary tree. As long as the tree
finally ends up freed, it doesn’t matter how much it is mangled in the process. In this case,
“the end justifies the means” and we are free to do it however we like.

So let’s consider why we needed a stack before. It was to keep track of nodes whose left
subtree we were currently visiting, in order to go back later and visit them and their right
subtrees. Hmm. . .what if we rearranged nodes so that they didn’t have any left subtrees?
Then we could just descend to the right, without need to keep track of anything on a stack.

We can do this. For the case where the current node p has a left child q , consider the
transformation below where we rotate right at p:

a

q

b

p

c ⇒ a

q

b

p

c

where a, b, and c are arbitrary subtrees or even empty trees. This transformation shifts
nodes from the left to the right side of the root (which is now q). If it is performed enough
times, the root node will no longer have a left child. After the transformation, q becomes
the current node.

68 GNU libavl 2.0.1

For the case where the current node has no left child, we can just destroy the current
node and descend to its right. Because the transformation used does not change the tree’s
ordering, we end up destroying nodes in inorder. It is instructive to verify this by simulating
with paper and pencil the destruction of a few trees this way.

The code to implement destruction in this manner is brief and straightforward:
§84 〈BST destruction function 84 〉 ≡

void bst destroy (struct bst table ∗tree, bst item func ∗destroy) {
struct bst node ∗p, ∗q ;
assert (tree != NULL);
for (p = tree→bst root ; p != NULL; p = q)

if (p→bst link [0] == NULL) {
q = p→bst link [1];
if (destroy != NULL && p→bst data != NULL)

destroy (p→bst data, tree→bst param);
tree→bst alloc→libavl free (tree→bst alloc, p);

} else {
q = p→bst link [0];
p→bst link [0] = q→bst link [1];
q→bst link [1] = p;

}
tree→bst alloc→libavl free (tree→bst alloc, tree);

}
This code is included in §29, §145, §196, §489, §522, and §554.

See also: [Stout 1986], tree to vine procedure.

Exercises:

1. Before calling destroy() above, we first test that we are not passing it a NULL pointer,
because we do not want destroy() to have to deal with this case. How can such a pointer
get into the tree in the first place, since bst probe() refuses to insert such a pointer into a
tree?

4.11.2 Aside: Recursive Destruction

The algorithm used in the previous section is easy and fast, but it is not the most
common method for destroying a tree. The usual way is to perform a traversal of the tree,
in much the same way we did for tree traversal and copying. Once again, we’ll start from
a recursive implementation, because these are so easy to write. The only tricky part is
that subtrees have to be freed before the root. This code is hard-wired to use free() for
simplicity:

§85 〈Destroy a BST recursively 85 〉 ≡
static void bst destroy recursive (struct bst node ∗node) {

if (node == NULL)
return;

bst destroy recursive (node→bst link [0]);
bst destroy recursive (node→bst link [1]);

Chapter 4: Binary Search Trees 69

free (node);
}

4.11.3 Aside: Iterative Destruction

As we’ve done before for other algorithms, we can factor the recursive destruction algo-
rithm into an equivalent iteration. In this case, neither recursive call is tail recursive, and
we can’t easily modify the code so that it is. We could still factor out the recursion by our
usual methods, although it would be more difficult, but this problem is simple enough to
figure out from first principles. Let’s do it that way, instead, this time.

The idea is that, for the tree’s root, we traverse its left subtree, then its right subtree,
then free the root. This pattern is called a postorder traversal.

Let’s think about how much state we need to keep track of. When we’re traversing the
root’s left subtree, we still need to remember the root, in order to come back to it later.
The same is true while traversing the root’s right subtree, because we still need to come
back to free the root. What’s more, we need to keep track of what state we’re in: have we
traversed the root’s left subtree or not, have we traversed the root’s right subtree or not?

This naturally suggests a stack that holds two-part items (root , state), where root is the
root of the tree or subtree and state is the state of the traversal at that node. We start
by selecting the tree’s root as our current node p, then pushing (p, 0) onto the stack and
moving down to the left as far as we can, pushing as we go. Then we start popping off
the stack into (p, state) and notice that state is 0, which tells us that we’ve traversed p’s
left subtree but not its right. So, we push (p, 1) back onto the stack, then we traverse p’s
right subtree. When, later, we pop off that same node back off the stack, the 1 tells us that
we’ve already traversed both subtrees, so we free the node and keep popping. The pattern
follows as we continue back up the tree.

That sounds pretty complicated, so let’s work through an example to help clarify. Con-
sider this binary search tree:

1

2

3

4

5

Abstractly speaking, we start with 4 as p and an empty stack. First, we work our way
down the left-child pointers, pushing onto the stack as we go. We push (4, 0), then (2, 0),
then (1, 0), and then p is NULL and we’ve fallen off the bottom of the tree. We pop the top
item off the stack into (p, state), getting (1, 0). Noticing that we have 0 for state, we push
(1, 1) on the stack and traverse 1’s right subtree, but it is empty so there is nothing to do.
We pop again and notice that state is 1, meaning that we’ve fully traversed 1’s subtrees, so
we free node 1. We pop again, getting 2 for p and 0 for state. Because state is 0, we push
(2, 1) and traverse 2’s right subtree, which means that we push (3, 0). We traverse 3’s null
right subtree (again, it is empty so there is nothing to do), pushing and popping (3, 1),
then free node 3, then move back up to 2. Because we’ve traversed 2’s right subtree, state
is 1 and p is 2, and we free node 2. You should be able to figure out how 4 and 5 get freed.

A straightforward implementation of this approach looks like this:
§86 〈Destroy a BST iteratively 86 〉 ≡

70 GNU libavl 2.0.1

void bst destroy (struct bst table ∗tree, bst item func ∗destroy) {
struct bst node ∗stack [BST_MAX_HEIGHT];
unsigned char state[BST_MAX_HEIGHT];
int height = 0;

struct bst node ∗p;

assert (tree != NULL);
p = tree→bst root ;
for (;;) {

while (p != NULL) {
if (height >= BST_MAX_HEIGHT) {

fprintf (stderr , "treeÃtooÃdeep\n");
exit (EXIT_FAILURE);

}
stack [height] = p;
state[height] = 0;
height++;

p = p→bst link [0];
}
for (;;) {

if (height == 0) {
tree→bst alloc→libavl free (tree→bst alloc, tree);
return;

}
height−−;
p = stack [height];
if (state[height] == 0) {

state[height++] = 1;
p = p→bst link [1];
break;

} else {
if (destroy != NULL && p→bst data != NULL)

destroy (p→bst data, tree→bst param);
tree→bst alloc→libavl free (tree→bst alloc, p);

}
}

}
}
See also: [Knuth 1997], exercise 13 in section 2.3.1.

4.12 Balance

Sometimes binary trees can grow to become much taller than their optimum height. For
example, the following binary tree was one of the tallest from a sample of 100 15-node trees
built by inserting nodes in random order:

Chapter 4: Binary Search Trees 71

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The average number of comparisons required to find a random node in this tree is (1 +
2+(3×2)+(4×4)+(5×4)+6+7+8)/15 = 4.4 comparisons. In contrast, the corresponding
optimal binary tree, shown below, requires only (1 + (2× 2) + (3 × 4) + (4 × 8))/15 = 3.3
comparisons, on average. Moreover, the optimal tree requires a maximum of 4, as opposed
to 8, comparisons for any search:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Besides this inefficiency in time, trees that grow too tall can cause inefficiency in space,
leading to an overflow of the stack in bst t next(), bst copy(), or other functions. For both
reasons, it is helpful to have a routine to rearrange a tree to its minimum possible height,
that is, to balance the tree.

The algorithm we will use for balancing proceeds in two stages. In the first stage, the
binary tree is “flattened” into a pathological, linear binary tree, called a “vine.” In the
second stage, binary tree structure is restored by repeatedly “compressing” the vine into a
minimal-height binary tree.

Here’s a top-level view of the balancing function:
§87 〈BST balance function 87 〉 ≡

〈BST to vine function 89 〉
〈Vine to balanced BST function 90 〉
void bst balance (struct bst table ∗tree) {

assert (tree != NULL);
tree to vine (tree);
vine to tree (tree);
tree→bst generation++;

}
This code is included in §29.

§88 〈BST extra function prototypes 88 〉 ≡
/∗ Special BST functions. ∗/
void bst balance (struct bst table ∗tree);

72 GNU libavl 2.0.1

This code is included in §24, §247, §372, and §486.

See also: [Stout 1986], rebalance procedure.

4.12.1 From Tree to Vine

The first stage of balancing converts a binary tree into a linear structure resembling a
linked list, called a vine. The vines we will create have the greatest value in the binary
tree at the root and decrease descending to the left. Any binary search tree that contains a
particular set of values, no matter its shape, corresponds to the same vine of this type. For
instance, all binary search trees of the integers 0. . . 4 will be transformed into the following
vine:

0

1

2

3

4

The method for transforming a tree into a vine of this type is similar to that used for
destroying a tree by rotation (see Section 4.11.1 [Destroying a BST by Rotation], page 67).
We step pointer p through the tree, starting at the root of the tree, maintaining pointer q
as p’s parent. (Because we’re building a vine, p is always the left child of q .) At each step,
we do one of two things:
• If p has no right child, then this part of the tree is already the shape we want it to be.

We step p and q down to the left and continue.
• If p has a right child r , then we rotate left at p, performing the following transformation:

a

p

b

r

c

q

⇒

a

p

b

r

c

q

where a, b, and c are arbitrary subtrees or empty trees. Node r then becomes the
new p. If c is an empty tree, then, in the next step, we will continue down the tree.
Otherwise, the right subtree of p is smaller (contains fewer nodes) than previously, so
we’re on the right track.

This is all it takes:
§89 〈BST to vine function 89 〉 ≡

/∗ Converts tree into a vine. ∗/
static void tree to vine (struct bst table ∗tree) {

struct bst node ∗q , ∗p;
q = (struct bst node ∗) &tree→bst root ;
p = tree→bst root ;

Chapter 4: Binary Search Trees 73

while (p != NULL)
if (p→bst link [1] == NULL) {

q = p;
p = p→bst link [0];

}
else {

struct bst node ∗r = p→bst link [1];
p→bst link [1] = r→bst link [0];
r→bst link [0] = p;
p = r ;
q→bst link [0] = r ;

}
}

This code is included in §87, §511, and §679.

See also: [Stout 1986], tree to vine procedure.

4.12.2 From Vine to Balanced Tree

Converting the vine, once we have it, into a balanced tree is the interesting and clever
part of the balancing operation. However, at first it may be somewhat less than obvious
how this is actually done. We will tackle the subject by presenting an example, then the
generalized form.

Suppose we have a vine, as above, with 2n− 1 nodes for positive integer n. For the sake
of example, take n = 4, corresponding to a tree with 15 nodes. We convert this vine into a
balanced tree by performing three successive compression operations.

To perform the first compression, move down the vine, starting at the root. Conceptually
assign each node a “color”, alternating between red and black and starting with red at the
root.3 Then, take each red node, except the bottommost, and remove it from the vine,
making it the child of its black former child node.

After this transformation, we have something that looks a little more like a tree. Instead
of a 15-node vine, we have a 7-node black vine with a 7-node red vine as its right children
and a single red node as its left child. Graphically, this first compression step on a 15-node
vine looks like this:

3 These colors are for the purpose of illustration only. They are not stored in the nodes and are not related
to those used in a red-black tree.

74 GNU libavl 2.0.1

1

2

...

13

14

15

⇒

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

To perform the second compression, recolor all the red nodes to white, then change the
color of alternate black nodes to red, starting at the root. As before, extract each red node,
except the bottommost, and reattach it as the child of its black former child node. Attach
each black node’s right subtree as the left subtree of the corresponding red node. Thus, we
have the following:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

⇒

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The third compression is the same as the first two. Nodes 12 and 4 are recolored red,
then node 12 is removed and reattached as the right child of its black former child node 8,
receiving node 8’s right subtree as its left subtree:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 ⇒

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The result is a fully balanced tree.

4.12.2.1 General Trees

A compression is the repeated application of a right rotation, called in this context a
“compression transformation”, once for each black node, like so:

Chapter 4: Binary Search Trees 75

a

B

b

R

c ⇒ a

B

b

R

c

So far, all of the compressions we’ve performed have involved all 2k−1 nodes composing the
“main vine.” This works out well for an initial vine of exactly 2n − 1 nodes. In this case, a
total of n−1 compressions are required, where for successive compressions k = n, n−1, . . . , 2.

For trees that do not have exactly one fewer than a power of two nodes, we need to begin
with a compression that does not involve all of the nodes in the vine. Suppose that our
vine has m nodes, where 2n− 1 < m < 2n+1− 1 for some value of n. Then, by applying the
compression transformation shown above m − (2n − 1) times, we reduce the length of the
main vine to exactly 2n − 1 nodes. After that, we can treat the problem in the same way
as the former case. The result is a balanced tree with n full levels of nodes, and a bottom
level containing m− (2n − 1) nodes and (2n+1 − 1)−m vacancies.

An example is indicated. Suppose that the vine contains m ≡ 9 nodes numbered from
1 to 9. Then n ≡ 3 since we have 23 − 1 ≡ 7 < 9 < 15 ≡ 24 − 1, and we must perform the
compression transformation shown above 9− (23− 1) ≡ 2 times initially, reducing the main
vine’s length to 7 nodes. Afterward, we treat the problem the same way as for a tree that
started off with only 7 nodes, performing one compression with k ≡ 3 and one with k ≡
2. The entire sequence, omitting the initial vine, looks like this:

1

...

5

6

7

8

9

⇒

1

2

3

4

5

6

7

8

9
⇒

1

2

3

4

5

6

7

8

9

Now we have a general technique that can be applied to a vine of any size.

4.12.2.2 Implementation

Implementing this algorithm is more or less straightforward. Let’s start from an outline:
§90 〈Vine to balanced BST function 90 〉 ≡

〈BST compression function 95 〉
/∗ Converts tree, which must be in the shape of a vine, into a balanced tree. ∗/
static void vine to tree (struct bst table ∗tree) {

unsigned long vine; /∗ Number of nodes in main vine. ∗/
unsigned long leaves; /∗ Nodes in incomplete bottom level, if any. ∗/
int height ; /∗ Height of produced balanced tree. ∗/
〈Calculate leaves 91 〉
〈Reduce vine general case to special case 92 〉
〈Make special case vine into balanced tree and count height 93 〉
〈Check for tree height in range 94 〉

}

76 GNU libavl 2.0.1

This code is included in §87.

The first step is to calculate the number of compression transformations necessary to
reduce the general case of a tree with m nodes to the special case of exactly 2n − 1 nodes,
i.e., calculate m − (2n − 1), and store it in variable leaves. We are given only the value of
m, as tree→bst count . Rewriting the calculation as the equivalent m + 1− 2n, one way to
calculate it is evident from looking at the pattern in binary:

m n m + 1 2n m + 1− 2n

1 1 2 = 000102 2 = 000102 0 = 000002

2 1 3 = 000112 2 = 000102 1 = 000012

3 2 4 = 001002 4 = 001002 0 = 000002

4 2 5 = 001012 4 = 001002 1 = 000012

5 2 6 = 001102 4 = 001002 2 = 000102

6 2 7 = 001112 4 = 001002 3 = 000112

7 3 8 = 010002 8 = 010002 0 = 000002

8 3 9 = 010012 8 = 010002 1 = 000002

9 3 10 = 010012 8 = 010002 2 = 000002

See the pattern? It’s simply that m + 1− 2n is m with the leftmost 1-bit turned off. So,
if we can find the leftmost 1-bit in m + 1 we can figure out the number of leaves.

In turn, there are numerous ways to find the leftmost 1-bit in a number. The one used
here is based on the principle that, if x is a positive integer, then x & (x − 1) is x with its
rightmost 1-bit turned off.

Here’s the code that calculates the number of leaves and stores it in leaves:
§91 〈Calculate leaves 91 〉 ≡

leaves = tree→bst count + 1;
for (;;) {

unsigned long next = leaves & (leaves − 1);
if (next == 0)

break;
leaves = next ;

}
leaves = tree→bst count + 1 − leaves;
This code is included in §90, §285, §512, and §680.

Once we have the number of leaves, we perform a compression composed of leaves com-
pression transformations. That’s all it takes to reduce the general case to the 2n− 1 special
case. We’ll write the compress() function itself later:

§92 〈Reduce vine general case to special case 92 〉 ≡
compress ((struct bst node ∗) &tree→bst root , leaves);
This code is included in §90, §512, and §680.

The heart of the function is the compression of the vine into the tree. Before each
compression, vine contains the number of nodes in the main vine of the tree. The number

Chapter 4: Binary Search Trees 77

of compression transformations necessary for the compression is vine / 2; e.g., when the
main vine contains 7 nodes, 7/2 = 3 transformations are necessary. The number of nodes
in the vine afterward is the same number (see page 73).

At the same time, we keep track of the height of the balanced tree. The final tree always
has height at least 1. Each compression step means that it is one level taller than that. If
the tree needed general-to-special-case transformations, that is, leaves > 0, then it’s one
more than that.

§93 〈Make special case vine into balanced tree and count height 93 〉 ≡
vine = tree→bst count − leaves;
height = 1 + (leaves > 0);
while (vine > 1) {

compress ((struct bst node ∗) &tree→bst root , vine / 2);
vine /= 2;
height++;

}
This code is included in §90, §512, and §680.

Finally, we make sure that the height of the tree is within range for what the func-
tions that use stacks can handle. Otherwise, we could end up with an infinite loop, with
bst t next() (for example) calling bst balance() repeatedly to balance the tree in order to
reduce its height to the acceptable range.

§94 〈Check for tree height in range 94 〉 ≡
if (height > BST_MAX_HEIGHT) {

fprintf (stderr , "libavl:ÃTreeÃtooÃbigÃ(%luÃnodes)ÃtoÃhandle.",
(unsigned long) tree→bst count);

exit (EXIT_FAILURE);
}
This code is included in §90.

4.12.2.3 Implementing Compression

The final bit of code we need is that for performing a compression. The following code
performs a compression consisting of count applications of the compression transformation
starting at root :

§95 〈BST compression function 95 〉 ≡
/∗ Performs a compression transformation count times, starting at root . ∗/
static void compress (struct bst node ∗root , unsigned long count) {

assert (root != NULL);
while (count−−) {

struct bst node ∗red = root→bst link [0];
struct bst node ∗black = red→bst link [0];
root→bst link [0] = black ;
red→bst link [0] = black→bst link [1];
black→bst link [1] = red ;
root = black ;

}

78 GNU libavl 2.0.1

}
This code is included in §90 and §512.

The operation of compress() should be obvious, given the discussion earlier. See Sec-
tion 4.12.2.1 [Balancing General Trees], page 74, above, for a review.
See also: [Stout 1986], vine to tree procedure.

4.13 Aside: Joining BSTs

Occasionally we may want to take a pair of BSTs and merge or “join” their contents,
forming a single BST that contains all the items in the two original BSTs. It’s easy to
do this with a series of calls to bst insert(), but we can optimize the process if we write a
function exclusively for the purpose. We’ll write such a function in this section.

There are two restrictions on the trees to be joined. First, the BSTs’ contents must
be disjoint. That is, no item in one may match any item in the other. Second, the BSTs
must have compatible comparison functions. Typically, they are the same. Speaking more
precisely, if f () and g() are the comparison functions, p and q are nodes in either BST, and
r and s are the BSTs’ user-provided extra comparison parameters, then the expressions
f (p, q , r), f (p, q , s), g(p, q , r), and g(p, q , s) must all have the same value for all possible
choices of p and q .

Suppose we’re trying to join the trees shown below:

1

2

4a

6

9 0

3

5

7 b

8

Our first inclination is to try a “divide and conquer” approach by reducing the problem
of joining a and b to the subproblems of joining a’s left subtree with b’s left subtree and
joining a’s right subtree with b’s right subtree. Let us postulate for the moment that we
are able to solve these subproblems and that the solutions that we come up with are the
following:

0

1

2

3

5 6

8

9

To convert this partial solution into a full solution we must combine these two subtrees into
a single tree and at the same time reintroduce the nodes a and b into the combined tree.
It is easy enough to do this by making a (or b) the root of the combined tree with these
two subtrees as its children, then inserting b (or a) into the combined tree. Unfortunately,
in neither case will this actually work out properly for our example. The diagram below
illustrates one possibility, the result of combining the two subtrees as the child of node 4,
then inserting node 7 into the final tree. As you can see, nodes 4 and 5 are out of order:4

4 The ∗∗ notation in the diagram emphasizes that this is a counterexample.

Chapter 4: Binary Search Trees 79

0

1

2

3

5

4

6

7

8

9 ∗∗

Now let’s step back and analyze why this attempt failed. It was essentially because,
when we recombined the subtrees, a node in the combined tree’s left subtree had a value
larger than the root. If we trace it back to the original trees to be joined, we see that this
was because node 5 in the left subtree of b is greater than a. (If we had chosen 7 as the
root of the combined tree we would have found instead node 6 in the right subtree of b to
be the culprit.)

On the other hand, if every node in the left subtree of a had a value less than b’s value,
and every node in the right subtree of a had a value greater than b’s value, there would
be no problem. Hey, wait a second. . . we can force that condition. If we perform a root
insertion (see Section 4.7.1 [Root Insertion in a BST], page 37) of b into subtree a, then we
end up with one pair of subtrees whose node values are all less than 7 (the new and former
left subtrees of node 7) and one pair of subtrees whose node values are all greater than 7
(the new and former right subtrees of node 7). Conceptually it looks like this, although in
reality we would need to remove node 7 from the tree on the right as we inserted it into the
tree on the left:

1

2

4

6

7

9

0

3

5

7

8

We can then combine the two subtrees with values less than 7 with each other, and similarly
for the ones with values greater than 7, using the same algorithm recursively, and safely
set the resulting subtrees as the left and right subtrees of node 7, respectively. The final
product is a correctly joined binary tree:

0

1

2

3

4

5

6

7

8

9

Of course, since we’ve defined a join recursively in terms of itself, there must be some
maximum depth to the recursion, some simple case that can be defined without further
recursion. This is easy: the join of an empty tree with another tree is the second tree.

80 GNU libavl 2.0.1

Implementation

It’s easy to implement this algorithm recursively. The only nonobvious part of the code
below is the treatment of node b. We want to insert node b, but not b’s children, into the
subtree rooted at a. However, we still need to keep track of b’s children. So we temporarily
save b’s children as b0 and b1 and set its child pointers to NULL before the root insertion.

This code makes use of root insert() from 〈Robust root insertion of existing node in
arbitrary subtree 625 〉.

§96 〈BST join function, recursive version 96 〉 ≡
/∗ Joins a and b, which are subtrees of tree, and returns the resulting tree. ∗/
static struct bst node ∗join (struct bst table ∗tree, struct bst node ∗a, struct bst node ∗b) {

if (b == NULL)
return a;

else if (a == NULL)
return b;

else {
struct bst node ∗b0 = b→bst link [0];
struct bst node ∗b1 = b→bst link [1];
b→bst link [0] = b→bst link [1] = NULL;
root insert (tree, &a, b);
a→bst link [0] = join (tree, b0 , a→bst link [0]);
a→bst link [1] = join (tree, b1 , a→bst link [1]);
return a;

}
}
/∗ Joins a and b, which must be disjoint and have compatible comparison functions.

b is destroyed in the process. ∗/
void bst join (struct bst table ∗a, struct bst table ∗b) {

a→bst root = join (a, a→bst root , b→bst root);
a→bst count += b→bst count ;
free (b);

}
See also: [Sedgewick 1998], program 12.16.

Exercises:

1. Rewrite bst join() to avoid use of recursion.

4.14 Testing

Whew! We’re finally done with building functions for performing BST operations. But
we haven’t tested any of our code. Testing is an essential step in writing programs, because
untested software cannot be assumed to work.

Let’s build a test program that exercises all of the functions we wrote. We’ll also do our
best to make parts of it generic, so that we can reuse test code in later chapters when we
want to test other BST-based structures.

Chapter 4: Binary Search Trees 81

The first step is to figure out how to test the code. One goal in testing is to exercise
as much of the code as possible. Ideally, every line of code would be executed sometime
during testing. Often, this is difficult or impossible, but the principle remains valid, with
the goal modified to testing as much of the code as possible.

In applying this principle to the BST code, we have to consider why each line of code is
executed. If we look at the code for most functions in 〈 bst.c 25 〉, we can see that, if we
execute them for any BST of reasonable size, most or all of their code will be tested.

This is encouraging. It means that we can just construct some trees and try out the
BST functions on them, check that the results make sense, and have a pretty good idea
that they work. Moreover, if we build trees in a random fashion, and delete their nodes in
a random order, and do it several times, we’ll even have a good idea that the bst probe()
and bst delete() cases have all come up and worked properly. (If you want to be sure, then
you can insert printf () calls for each case to record when they trip.) This is not the same
as a proof of correctness, but proofs of correctness can only be constructed by computer
scientists with fancy degrees, not by mere clever programmers.

There are three notably missing pieces of code coverage if we just do the above. These
are stack overflow handling, memory allocation failure handling, and traverser code to deal
with modified trees. But we can mop up these extra problems with a little extra effort:5

• Stack overflow handling can be tested by forcing the stack to overflow. Stack overflow
can occur in many places, so for best effect we must test each possible spot. We will
write special tests for these problems.

• Memory allocation failure handling can be tested by simulating memory allocation
failures. We will write a replacement memory allocator that “fails” after a specified
number of calls. This allocator will also allow for memory leak detection.

• Traverser code to deal with modified trees. This can be tested by modifying trees
during traversal and making sure that the traversal functions still work as expected.

The testing code can be broken into the following groups of functions:

Testing and verification
These functions actually try out the BST routines and do their best to make
sure that their results are correct.

Test set generation
Generates the order of node insertion and deletion, for use during testing.

Memory manager
Handles memory issues, including memory leak detection and failure simulation.

User interaction
Figures out what the user wants to test in this run.

Main program
Glues everything else together by calling functions in the proper order.

Utilities Miscellaneous routines that don’t fit comfortably into another category.

5 Some might scoff at this amount of detail, calling it wasted effort, but this thorough testing in fact
revealed a number of subtle bugs during development of Libavl that had otherwise gone unnoticed.

82 GNU libavl 2.0.1

Most of the test code will also work nicely for testing other binary tree-based structures.
This code is grouped into a single file, 〈 test.c 97 〉, which has the following structure:

§97 〈 test.c 97 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdarg.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include 〈 string.h 〉
#include 〈 time.h 〉
#include “test.h”
〈Test declarations 121 〉
〈Test utility functions 134 〉
〈Memory tracker 126 〉
〈Option parser 586 〉
〈Command line parser 589 〉
〈 Insertion and deletion order generation 642 〉
〈Random number seeding 643 〉
〈Test main program 140 〉

The code specifically for testing BSTs goes into 〈 bst-test.c 98 〉, outlined like this:
§98 〈 bst-test.c 98 〉 ≡

〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “bst.h”
#include “test.h”
〈BST print function 119 〉
〈BST traverser check function 104 〉
〈Compare two BSTs for structure and content 106 〉
〈Recursively verify BST structure 113 〉
〈BST verify function 109 〉
〈BST test function 100 〉
〈BST overflow test function 122 〉

The interface between 〈 test.c 97 〉 and 〈 bst-test.c 98 〉 is contained in 〈 test.h 99 〉:
§99 〈 test.h 99 〉 ≡

〈License 1 〉
#ifndef TEST_H
#define TEST_H 1
〈Memory allocator 5 〉
〈Test prototypes 101 〉
#endif /∗ test.h ∗/

Although much of the test program code is nontrivial, only some of the interesting
parts fall within the scope of this book. The remainder will be listed without comment or

Chapter 4: Binary Search Trees 83

relegated to the exercises. The most tedious code is listed in an appendix (see Appendix B
[Supplementary Code], page 323).

4.14.1 Testing BSTs

As suggested above, the main way we will test the BST routines is by using them
and checking the results, with checks performed by slow but simple routines. The idea
is that bugs in the BST routines are unlikely to be mirrored in the check routines, and
vice versa. This way, identical results from the BST and checks tend to indicate that both
implementations are correct.

The main test routine is designed to exercise as many of the BST functions as possible.
It starts by creating a BST and inserting nodes into it, then deleting the nodes. Midway,
various traversals are tested, including the ability to traverse a tree while its content is
changing. After each operation that modifies the tree, its structure and content are verified
for correspondence with expectations. The function for copying a BST is also tested. This
function, test(), has the following outline:

§100 〈BST test function 100 〉 ≡
/∗ Tests tree functions.

insert [] and delete[] must contain some permutation of values 0. . .n − 1.
Uses allocator as the allocator for tree and node data.
Higher values of verbosity produce more debug output. ∗/

int test correctness (struct libavl allocator ∗allocator ,
int insert [], int delete[], int n, int verbosity) {

struct bst table ∗tree;
int okay = 1;
int i ;
〈Test creating a BST and inserting into it 102 〉
〈Test BST traversal during modifications 103 〉
〈Test deleting nodes from the BST and making copies of it 105 〉
〈Test deleting from an empty tree 107 〉
〈Test destroying the tree 108 〉
return okay ;

}
This code is included in §98, §186, §238, §330, §368, §449, §482, §548, and §583.

§101 〈Test prototypes 101 〉 ≡
int test correctness (struct libavl allocator ∗allocator ,

int insert [], int delete[], int n, int verbosity);
See also §123 and §135.

This code is included in §99.

The first step is to create a BST and insert items into it in the order specified by
the caller. We use the comparison function compare ints() from 〈Comparison function for
ints 3 〉 to put the tree’s items into ordinary numerical order. After each insertion we call
verify tree(), which we’ll write later and which checks that the tree actually contains the
items that it should:

§102 〈Test creating a BST and inserting into it 102 〉 ≡

84 GNU libavl 2.0.1

tree = bst create (compare ints, NULL, allocator);
if (tree == NULL) {

if (verbosity >= 0) printf ("ÃÃOutÃofÃmemoryÃcreatingÃtree.\n");
return 1;

}
for (i = 0; i < n; i++) {

if (verbosity >= 2) printf ("ÃÃInsertingÃ%d...\n", insert [i]);
/∗ Add the ith element to the tree. ∗/
{

void ∗∗p = bst probe (tree, &insert [i]);
if (p == NULL) {

if (verbosity >= 0) printf ("ÃÃÃÃOutÃofÃmemoryÃinÃinsertion.\n");
bst destroy (tree, NULL);
return 1;

}
if (∗p != &insert [i]) printf ("ÃÃÃÃDuplicateÃitemÃinÃtree!\n");

}
if (verbosity >= 3) print whole tree (tree, "ÃÃÃÃAfterward");
if (!verify tree (tree, insert , i + 1))

return 0;
}
This code is included in §100 and §295.

If the tree is being modified during traversal, that causes a little more stress on the tree
routines, so we should test this specially. We initialize one traverser, x , at a selected item,
then delete and reinsert a different item in order to invalidate that traverser. We make a
copy, y , of the traverser in order to check that bst t copy() works properly and initialize a
third traverser, z , with the inserted item. After the deletion and reinsertion we check that
all three of the traversers behave properly.

§103 〈Test BST traversal during modifications 103 〉 ≡
for (i = 0; i < n; i++) {

struct bst traverser x , y , z ;
int ∗deleted ;
if (insert [i] == delete[i])

continue;
if (verbosity >= 2)

printf ("ÃÃÃCheckingÃtraversalÃfromÃitemÃ%d...\n", insert [i]);
if (bst t find (&x , tree, &insert [i]) == NULL) {

printf ("ÃÃÃÃCan’tÃfindÃitemÃ%dÃinÃtree!\n", insert [i]);
continue;

}
okay &= check traverser (&x , insert [i], n, "Predeletion");
if (verbosity >= 3) printf ("ÃÃÃÃDeletingÃitemÃ%d.\n", delete[i]);
deleted = bst delete (tree, &delete[i]);
if (deleted == NULL || ∗deleted != delete[i]) {

Chapter 4: Binary Search Trees 85

okay = 0;
if (deleted == NULL)

printf ("ÃÃÃÃDeletionÃfailed.\n");
else printf ("ÃÃÃÃWrongÃnodeÃ%dÃreturned.\n", ∗deleted);

}
bst t copy (&y , &x);
if (verbosity >= 3) printf ("ÃÃÃÃRe-insertingÃitemÃ%d.\n", delete[i]);
if (bst t insert (&z , tree, &delete[i]) == NULL) {

if (verbosity >= 0) printf ("ÃÃÃÃOutÃofÃmemoryÃre-insertingÃitem.\n");
bst destroy (tree, NULL);
return 1;

}
okay &= check traverser (&x , insert [i], n, "Postdeletion");
okay &= check traverser (&y , insert [i], n, "Copied");
okay &= check traverser (&z , delete[i], n, "Insertion");
if (!verify tree (tree, insert , n))

return 0;
}
This code is included in §100 and §295.

The check traverser() function used above checks that a traverser behaves properly, by
checking that the traverser is at the correct item and that the previous and next items are
correct as well.

§104 〈BST traverser check function 104 〉 ≡
/∗ Checks that the current item at trav is i

and that its previous and next items are as they should be.
label is a name for the traverser used in reporting messages.
There should be n items in the tree numbered 0. . .n − 1.
Returns nonzero only if there is an error. ∗/

static int check traverser (struct bst traverser ∗trav , int i , int n, const char ∗label) {
int okay = 1;
int ∗cur , ∗prev , ∗next ;
prev = bst t prev (trav);
if ((i == 0 && prev != NULL) || (i > 0 && (prev == NULL || ∗prev != i − 1))) {

printf ("ÃÃÃ%sÃtraverserÃaheadÃofÃ%d,ÃbutÃshouldÃbeÃaheadÃofÃ%d.\n",
label , prev != NULL ? ∗prev : −1, i == 0 ? −1 : i − 1);

okay = 0;
}
bst t next (trav);
cur = bst t cur (trav);
if (cur == NULL || ∗cur != i) {

printf ("ÃÃÃ%sÃtraverserÃatÃ%d,ÃbutÃshouldÃbeÃatÃ%d.\n",
label , cur != NULL ? ∗cur : −1, i);

okay = 0;
}
next = bst t next (trav);

86 GNU libavl 2.0.1

if ((i == n − 1 && next != NULL)
|| (i != n − 1 && (next == NULL || ∗next != i + 1))) {
printf ("ÃÃÃ%sÃtraverserÃbehindÃ%d,ÃbutÃshouldÃbeÃbehindÃ%d.\n",

label , next != NULL ? ∗next : −1, i == n − 1 ? −1 : i + 1);
okay = 0;

}
bst t prev (trav);
return okay ;

}
This code is included in §98, §186, §238, §290, §330, §368, §411, §449, §482, §515, §548, and §583.

We also need to test deleting nodes from the tree and making copies of a tree. Here’s
the code to do that:

§105 〈Test deleting nodes from the BST and making copies of it 105 〉 ≡
for (i = 0; i < n; i++) {

int ∗deleted ;
if (verbosity >= 2) printf ("ÃÃDeletingÃ%d...\n", delete[i]);
deleted = bst delete (tree, &delete[i]);
if (deleted == NULL || ∗deleted != delete[i]) {

okay = 0;
if (deleted == NULL)

printf ("ÃÃÃÃDeletionÃfailed.\n");
else printf ("ÃÃÃÃWrongÃnodeÃ%dÃreturned.\n", ∗deleted);

}
if (verbosity >= 3) print whole tree (tree, "ÃÃÃÃAfterward");
if (!verify tree (tree, delete + i + 1, n − i − 1))

return 0;
if (verbosity >= 2) printf ("ÃÃCopyingÃtreeÃandÃcomparing...\n");
/∗ Copy the tree and make sure it’s identical. ∗/
{

struct bst table ∗copy = bst copy (tree, NULL, NULL, NULL);
if (copy == NULL) {

if (verbosity >= 0) printf ("ÃÃOutÃofÃmemoryÃinÃcopy\n");
bst destroy (tree, NULL);
return 1;

}
okay &= compare trees (tree→bst root , copy→bst root);
bst destroy (copy , NULL);

}
}
This code is included in §100 and §295.

The actual comparison of trees is done recursively for simplicity:
§106 〈Compare two BSTs for structure and content 106 〉 ≡

/∗ Compares binary trees rooted at a and b, making sure that they are identical. ∗/
static int compare trees (struct bst node ∗a, struct bst node ∗b) {

Chapter 4: Binary Search Trees 87

int okay ;
if (a == NULL || b == NULL) {

assert (a == NULL && b == NULL);
return 1;

}
if (∗(int ∗) a→bst data != ∗(int ∗) b→bst data
|| ((a→bst link [0] != NULL) != (b→bst link [0] != NULL))
|| ((a→bst link [1] != NULL) != (b→bst link [1] != NULL))) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%dÃb=%dÃa:",

∗(int ∗) a→bst data, ∗(int ∗) b→bst data);
if (a→bst link [0] != NULL) printf ("l");
if (a→bst link [1] != NULL) printf ("r");
printf ("Ãb:");
if (b→bst link [0] != NULL) printf ("l");
if (b→bst link [1] != NULL) printf ("r");
printf ("\n");
return 0;

}
okay = 1;
if (a→bst link [0] != NULL) okay &= compare trees (a→bst link [0], b→bst link [0]);
if (a→bst link [1] != NULL) okay &= compare trees (a→bst link [1], b→bst link [1]);
return okay ;

}
This code is included in §98.

As a simple extra check, we make sure that attempting to delete from an empty tree
fails in the expected way:

§107 〈Test deleting from an empty tree 107 〉 ≡
if (bst delete (tree, &insert [0]) != NULL) {

printf ("ÃDeletionÃfromÃemptyÃtreeÃsucceeded.\n");
okay = 0;

}
This code is included in §100.

Finally, we’re done with the tree and can get rid of it.
§108 〈Test destroying the tree 108 〉 ≡

/∗ Test destroying the tree. ∗/
bst destroy (tree, NULL);

This code is included in §100 and §295.

Exercises:

1. Which functions in 〈 bst.c 25 〉 are not exercised by test()?

2. Some errors within test() just set the okay flag to zero, whereas others cause an immediate
unsuccessful return to the caller without performing any cleanup. A third class of errors
causes cleanup followed by a successful return. Why and how are these distinguished?

88 GNU libavl 2.0.1

4.14.1.1 BST Verification

After each change to the tree in the testing program, we call verify tree() to check that
the tree’s structure and content are what we think they should be. This function runs
through a full gamut of checks, with the following outline:

§109 〈BST verify function 109 〉 ≡
/∗ Checks that tree is well-formed

and verifies that the values in array [] are actually in tree.
There must be n elements in array [] and tree.
Returns nonzero only if no errors detected. ∗/

static int verify tree (struct bst table ∗tree, int array [], size t n) {
int okay = 1;
〈Check tree→bst count is correct 110 〉
if (okay) { 〈Check BST structure 111 〉 }
if (okay) { 〈Check that the tree contains all the elements it should 115 〉 }
if (okay) { 〈Check that forward traversal works 116 〉 }
if (okay) { 〈Check that backward traversal works 117 〉 }
if (okay) { 〈Check that traversal from the null element works 118 〉 }
return okay ;

}
This code is included in §98, §411, and §515.

The first step just checks that the number of items passed in as n is the same as
tree→bst count .

§110 〈Check tree→bst count is correct 110 〉 ≡
/∗ Check tree’s bst count against that supplied. ∗/
if (bst count (tree) != n) {

printf ("ÃTreeÃcountÃisÃ%lu,ÃbutÃshouldÃbeÃ%lu.\n",
(unsigned long) bst count (tree), (unsigned long) n);

okay = 0;
}
This code is included in §109, §190, §244, and §294.

Next, we verify that the BST has proper structure and that it has the proper number
of items. We’ll do this recursively because that’s easiest and most obviously correct way.
Function recurse verify tree() for this returns the number of nodes in the BST. After it
returns, we verify that this is the expected number.

§111 〈Check BST structure 111 〉 ≡
/∗ Recursively verify tree structure. ∗/
size t count ;
recurse verify tree (tree→bst root , &okay , &count , 0, INT_MAX);
〈Check counted nodes 112 〉
This code is included in §109 and §294.

§112 〈Check counted nodes 112 〉 ≡
if (count != n) {

Chapter 4: Binary Search Trees 89

printf ("ÃTreeÃhasÃ%luÃnodes,ÃbutÃshouldÃhaveÃ%lu.\n",
(unsigned long) count , (unsigned long) n);

okay = 0;
}
This code is included in §111, §191, and §246.

The function recurse verify tree() does the recursive verification. It checks that nodes’
values increase down to the right and decrease down to the left. We also use it to count the
number of nodes actually in the tree:

§113 〈Recursively verify BST structure 113 〉 ≡
/∗ Examines the binary tree rooted at node.

Zeroes ∗okay if an error occurs. Otherwise, does not modify ∗okay .
Sets ∗count to the number of nodes in that tree, including node itself if node != NULL.
All the nodes in the tree are verified to be at least min but no greater than max . ∗/

static void recurse verify tree (struct bst node ∗node, int ∗okay , size t ∗count ,
int min, int max) {

int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
if (node == NULL) {

∗count = 0;
return;

}
d = ∗(int ∗) node→bst data;
〈Verify binary search tree ordering 114 〉
recurse verify tree (node→bst link [0], okay , &subcount [0], min, d − 1);
recurse verify tree (node→bst link [1], okay , &subcount [1], d + 1, max);
∗count = 1 + subcount [0] + subcount [1];

}
This code is included in §98.

§114 〈Verify binary search tree ordering 114 〉 ≡
if (min > max) {

printf ("ÃParentsÃofÃnodeÃ%dÃconstrainÃitÃtoÃemptyÃrangeÃ%d...%d.\n",
d , min, max);

∗okay = 0;
} else if (d < min || d > max) {

printf ("ÃNodeÃ%dÃisÃnotÃinÃrangeÃ%d...%dÃimpliedÃbyÃitsÃparents.\n",
d , min, max);

∗okay = 0;
}
This code is included in §113, §188, §240, §293, §332, §370, §414, §451, §484, §517, §550, and §585.

The third step is to check that the BST indeed contains all of the items that it should:
§115 〈Check that the tree contains all the elements it should 115 〉 ≡

/∗ Check that all the values in array [] are in tree. ∗/
size t i ;
for (i = 0; i < n; i++)

90 GNU libavl 2.0.1

if (bst find (tree, &array [i]) == NULL) {
printf ("ÃTreeÃdoesÃnotÃcontainÃexpectedÃvalueÃ%d.\n", array [i]);
okay = 0;

}
This code is included in §109, §190, §244, and §294.

The final steps all check traversal of the BST, first by traversing in forward order from
the beginning to the end, then in reverse order, then by checking that the null item behaves
correctly. The forward traversal checks that the proper number of items are in the BST.
It could appear to have too few items if the tree’s pointers are screwed up in one way, or
it could appear to have too many items if they are screwed up in another way. We try to
figure out how many items actually appear in the tree during traversal, but give up if the
count gets to be more than twice that expected, assuming that this indicates a “loop” that
will cause traversal to never terminate.

§116 〈Check that forward traversal works 116 〉 ≡
/∗ Check that bst t first() and bst t next() work properly. ∗/
struct bst traverser trav ;
size t i ;
int prev = −1;
int ∗item;
for (i = 0, item = bst t first (&trav , tree); i < 2 ∗ n && item != NULL;

i++, item = bst t next (&trav)) {
if (∗item <= prev) {

printf ("ÃTreeÃoutÃofÃorder:Ã%dÃfollowsÃ%dÃinÃtraversal\n", ∗item, prev);
okay = 0;

}
prev = ∗item;

}
if (i != n) {

printf ("ÃTreeÃshouldÃhaveÃ%luÃitems,ÃbutÃhasÃ%luÃinÃtraversal\n",
(unsigned long) n, (unsigned long) i);

okay = 0;
}
This code is included in §109, §190, §244, and §294.

We do a similar traversal in the reverse order:
§117 〈Check that backward traversal works 117 〉 ≡

/∗ Check that bst t last() and bst t prev() work properly. ∗/
struct bst traverser trav ;
size t i ;
int next = INT_MAX;
int ∗item;
for (i = 0, item = bst t last (&trav , tree); i < 2 ∗ n && item != NULL;

i++, item = bst t prev (&trav)) {
if (∗item >= next) {

printf ("ÃTreeÃoutÃofÃorder:Ã%dÃprecedesÃ%dÃinÃtraversal\n", ∗item, next);
okay = 0;

Chapter 4: Binary Search Trees 91

}
next = ∗item;

}
if (i != n) {

printf ("ÃTreeÃshouldÃhaveÃ%luÃitems,ÃbutÃhasÃ%luÃinÃreverse\n",
(unsigned long) n, (unsigned long) i);

okay = 0;
}
This code is included in §109, §190, §244, and §294.

The final check to perform on the traverser is to make sure that the traverser null item
works properly. We start out a traverser at the null item with bst t init(), then make sure
that the next item after that, as reported by bst t next(), is the same as the item returned
by bst t init(), and similarly for the previous item:

§118 〈Check that traversal from the null element works 118 〉 ≡
/∗ Check that bst t init() works properly. ∗/
struct bst traverser init , first , last ;
int ∗cur , ∗prev , ∗next ;
bst t init (&init , tree);
bst t first (&first , tree);
bst t last (&last , tree);
cur = bst t cur (&init);
if (cur != NULL) {

printf ("ÃInitedÃtraverserÃshouldÃbeÃnull,ÃbutÃisÃactuallyÃ%d.\n", ∗cur);
okay = 0;

}
next = bst t next (&init);
if (next != bst t cur (&first)) {

printf ("ÃNextÃafterÃnullÃshouldÃbeÃ%d,ÃbutÃisÃactuallyÃ%d.\n",
∗(int ∗) bst t cur (&first), ∗next);

okay = 0;
}
bst t prev (&init);
prev = bst t prev (&init);
if (prev != bst t cur (&last)) {

printf ("ÃPreviousÃbeforeÃnullÃshouldÃbeÃ%d,ÃbutÃisÃactuallyÃ%d.\n",
∗(int ∗) bst t cur (&last), ∗prev);

okay = 0;
}
bst t next (&init);
This code is included in §109, §190, §244, and §294.

Exercises:

1. Many of the segments of code in this section cast size t arguments to printf () to unsigned
long. Why?

2. Does test() work properly for testing trees with only one item in them? Zero items?

92 GNU libavl 2.0.1

4.14.1.2 Displaying BST Structures

The print tree structure() function below can be useful for debugging, but it is not used
very much by the testing code. It prints out the structure of a tree, with the root first, then
its children in parentheses separated by a comma, and their children in inner parentheses,
and so on. This format is easy to print but difficult to visualize, so it’s a good idea to have
a notebook on hand to sketch out the shape of the tree. Alternatively, this output is in the
right format to feed directly into the texitree program used to draw the tree diagrams in
this book, which can produce output in plain text or PostScript form.

§119 〈BST print function 119 〉 ≡
/∗ Prints the structure of node, which is level levels from the top of the tree. ∗/
static void print tree structure (const struct bst node ∗node, int level) {

/∗ You can set the maximum level as high as you like.
Most of the time, you’ll want to debug code using small trees,
so that a large level indicates a “loop”, which is a bug. ∗/

if (level > 16) {
printf ("[...]");
return;

}
if (node == NULL)

return;

printf ("%d", ∗(int ∗) node→bst data);
if (node→bst link [0] != NULL || node→bst link [1] != NULL) {

putchar (’(’);

print tree structure (node→bst link [0], level + 1);
if (node→bst link [1] != NULL) {

putchar (’,’);
print tree structure (node→bst link [1], level + 1);

}
putchar (’)’);

}
}
See also §120.

This code is included in §98, §186, §238, §515, §548, and §583.

A function print whole tree() is also provided as a convenient wrapper for printing an
entire BST’s structure.

§120 〈BST print function 119 〉 +≡
/∗ Prints the entire structure of tree with the given title. ∗/
void print whole tree (const struct bst table ∗tree, const char ∗title) {

printf ("%s:Ã", title);
print tree structure (tree→bst root , 0);
putchar (’\n’);

}

Chapter 4: Binary Search Trees 93

4.14.2 Test Set Generation

We need code to generate a random permutation of numbers to order insertion and
deletion of items. We will support some other orders besides random permutation as well
for completeness and to allow for overflow testing. Here is the complete list:

§121 〈Test declarations 121 〉 ≡
/∗ Insertion order. ∗/
enum insert order {

INS_RANDOM, /∗ Random order. ∗/
INS_ASCENDING, /∗ Ascending order. ∗/
INS_DESCENDING, /∗ Descending order. ∗/
INS_BALANCED, /∗ Balanced tree order. ∗/
INS_ZIGZAG, /∗ Zig-zag order. ∗/
INS_ASCENDING_SHIFTED, /∗ Ascending from middle, then beginning. ∗/
INS_CUSTOM, /∗ Custom order. ∗/
INS_CNT /∗ Number of insertion orders. ∗/

};
/∗ Deletion order. ∗/
enum delete order {

DEL_RANDOM, /∗ Random order. ∗/
DEL_REVERSE, /∗ Reverse of insertion order. ∗/
DEL_SAME, /∗ Same as insertion order. ∗/
DEL_CUSTOM, /∗ Custom order. ∗/
DEL_CNT /∗ Number of deletion orders. ∗/

};
See also §125, §133, §138, §139, and§141.

This code is included in §97.

The code to actually generate these orderings is left to the exercises.

Exercises:

1. Write a function to generate a random permutation of the n ints between 0 and n − 1
into a provided array.

*2. Write a function to generate an ordering of ints that, when inserted into a binary tree,
produces a balanced tree of the integers from min to max inclusive. (Hint: what kind of
recursive traversal makes this easy?)

3. Write one function to generate an insertion order of n integers into a provided array
based on an enum insert order and the functions written in the previous two exercises.
Write a second function to generate a deletion order using similar parameters plus the
order of insertion.

*4. By default, the C random number generator produces the same sequence every time
the program is run. In order to generate different sequences, it has to be “seeded” using
srand() with a unique value. Write a function to select a random number seed based on
the current time.

94 GNU libavl 2.0.1

4.14.3 Testing Overflow

Testing for overflow requires an entirely different set of test functions. The idea is to
create a too-tall tree using one of the pathological insertion orders (ascending, descending,
zig-zag, shifted ascending), then try out each of the functions that can overflow on it and
make sure that they behave as they should.

There is a separate test function for each function that can overflow a stack but which
is not tested by test(). These functions are called by driver function test overflow(), which
also takes care of creating, populating, and destroying the tree.

§122 〈BST overflow test function 122 〉 ≡
〈Overflow testers 124 〉
/∗ Tests the tree routines for proper handling of overflows.

Inserting the n elements of order [] should produce a tree
with height greater than BST_MAX_HEIGHT.
Uses allocator as the allocator for tree and node data.
Use verbosity to set the level of chatter on stdout . ∗/

int test overflow (struct libavl allocator ∗allocator , int order [], int n, int verbosity) {
/∗ An overflow tester function. ∗/
typedef int test func (struct bst table ∗, int n);
/∗ An overflow tester. ∗/
struct test {

test func ∗func; /∗ Tester function. ∗/
const char ∗name; /∗ Test name. ∗/

};
/∗ All the overflow testers. ∗/
static const struct test test [] = {

{test bst t first , "firstÃitem"},
{test bst t last , "lastÃitem"},
{test bst t find , "findÃitem"},
{test bst t insert , "insertÃitem"},
{test bst t next , "nextÃitem"},
{test bst t prev , "previousÃitem"},
{test bst copy , "copyÃtree"},

};
const struct test ∗i ; /∗ Iterator. ∗/
/∗ Run all the overflow testers. ∗/
for (i = test ; i < test + sizeof test / sizeof ∗test ; i++) {

struct bst table ∗tree;
int j ;
if (verbosity >= 2) printf ("ÃÃRunningÃ%sÃtest...\n", i→name);
tree = bst create (compare ints, NULL, allocator);
if (tree == NULL) {

printf ("ÃÃÃÃOutÃofÃmemoryÃcreatingÃtree.\n");
return 1;

}

Chapter 4: Binary Search Trees 95

for (j = 0; j < n; j++) {
void ∗∗p = bst probe (tree, &order [j]);
if (p == NULL || ∗p != &order [j]) {

if (p == NULL && verbosity >= 0)
printf ("ÃÃÃÃOutÃofÃmemoryÃinÃinsertion.\n");

else if (p != NULL) printf ("ÃÃÃÃDuplicateÃitemÃinÃtree!\n");
bst destroy (tree, NULL);
return p == NULL;

}
}
if (i→func (tree, n) == 0)

return 0;
if (verify tree (tree, order , n) == 0)

return 0;
bst destroy (tree, NULL);

}
return 1;

}
This code is included in §98, §186, §238, §290, §330, §368, §411, §449, §482, §515, §548, and §583.

§123 〈Test prototypes 101 〉 +≡
int test overflow (struct libavl allocator ∗, int order [], int n, int verbosity);

There is an overflow tester for almost every function that can overflow. Here is one
example:

§124 〈Overflow testers 124 〉 ≡
static int test bst t first (struct bst table ∗tree, int n) {

struct bst traverser trav ;
int ∗first ;
first = bst t first (&trav , tree);
if (first == NULL || ∗first != 0) {

printf ("ÃÃÃÃFirstÃitemÃtestÃfailed:ÃexpectedÃ0,ÃgotÃ%d\n",
first != NULL ? ∗first : −1);

return 0;
}
return 1;

}
See also §644.

This code is included in §122.

Exercises:

1. Write the rest of the overflow tester functions. (The test overflow() function lists all of
them.)

4.14.4 Memory Manager

We want to test our code to make sure that it always releases allocated memory and
that it behaves robustly when memory allocations fail. We can do the former by building

96 GNU libavl 2.0.1

our own memory manager that keeps tracks of blocks as they are allocated and freed. The
memory manager can also disallow allocations according to a policy set by the user, taking
care of the latter.

The available policies are:

§125 〈Test declarations 121 〉 +≡
/∗ Memory tracking policy. ∗/
enum mt policy {

MT_TRACK, /∗ Track allocation for leak detection. ∗/
MT_NO_TRACK, /∗ No leak detection. ∗/
MT_FAIL_COUNT, /∗ Fail allocations after a while. ∗/
MT_FAIL_PERCENT, /∗ Fail allocations randomly. ∗/
MT_SUBALLOC /∗ Suballocate from larger blocks. ∗/

};
MT_TRACK and MT_NO_TRACK should be self-explanatory. MT_FAIL_COUNT takes an
argument specifying after how many allocations further allocations should always fail.
MT_FAIL_PERCENT takes an argument specifying an integer percentage of allocations to
randomly fail.

MT_SUBALLOC causes small blocks to be carved out of larger ones allocated with malloc().
This is a good idea for two reasons: malloc() can be slow and malloc() can waste a lot of
space dealing with the small blocks that Libavl uses for its node. Suballocation cannot be
implemented in an entirely portable way because of alignment issues, but the test program
here requires the user to specify the alignment needed, and its use is optional anyhow.

The memory manager keeps track of allocated blocks using struct block:

§126 〈Memory tracker 126 〉 ≡
/∗ Memory tracking allocator. ∗/
/∗ A memory block. ∗/
struct block {

struct block ∗next ; /∗ Next in linked list. ∗/
int idx ; /∗ Allocation order index number. ∗/
size t size; /∗ Size in bytes. ∗/
size t used ; /∗ MT SUBALLOC: amount used so far. ∗/
void ∗content ; /∗ Allocated region. ∗/

};
See also §127, §128, §129, §130, §131, and§132.

This code is included in §97.

The next member of struct block is used to keep a linked list of all the currently allocated
blocks. Searching this list is inefficient, but there are at least two reasons to do it this way,
instead of using a more efficient data structure, such as a binary tree. First, this code is for
testing binary tree routines—using a binary tree data structure to do it is a strange idea!
Second, the ISO C standard says that, with few exceptions, using the relational operators
(<, <=, >, >=) to compare pointers that do not point inside the same array produces
undefined behavior, but allows use of the equality operators (==, !=) for a larger class of
pointers.

Chapter 4: Binary Search Trees 97

We also need a data structure to keep track of settings and a list of blocks. This
memory manager uses the technique discussed in Exercise 2.5-3 to provide this structure to
the allocator.

§127 〈Memory tracker 126 〉 +≡
/∗ Indexes into arg [] within struct mt allocator. ∗/
enum mt arg index {

MT_COUNT = 0, /∗ MT_FAIL_COUNT: Remaining successful allocations. ∗/
MT_PERCENT = 0, /∗ MT_FAIL_PERCENT: Failure percentage. ∗/
MT_BLOCK_SIZE = 0, /∗ MT_SUBALLOC: Size of block to suballocate. ∗/
MT_ALIGN = 1 /∗ MT_SUBALLOC: Alignment of suballocated blocks. ∗/

};
/∗ Memory tracking allocator. ∗/
struct mt allocator {

struct libavl allocator allocator ; /∗ Allocator. Must be first member. ∗/
/∗ Settings. ∗/
enum mt policy policy ; /∗ Allocation policy. ∗/
int arg [2]; /∗ Policy arguments. ∗/
int verbosity ; /∗ Message verbosity level. ∗/
/∗ Current state. ∗/
struct block ∗head , ∗tail ; /∗ Head and tail of block list. ∗/
int alloc idx ; /∗ Number of allocations so far. ∗/
int block cnt ; /∗ Number of still-allocated blocks. ∗/

};
Function mt create() creates a new instance of the memory tracker. It takes an allocation

policy and policy argument, as well as a number specifying how verbose it should be in
reporting information. It uses utility function xmalloc(), a simple wrapper for malloc()
that aborts the program on failure. Here it is:

§128 〈Memory tracker 126 〉 +≡
static void ∗mt allocate (struct libavl allocator ∗, size t);
static void mt free (struct libavl allocator ∗, void ∗);
/∗ Initializes the memory manager for use

with allocation policy policy and policy arguments arg [],
at verbosity level verbosity , where 0 is a “normal” value. ∗/

struct mt allocator ∗mt create (enum mt policy policy , int arg [2], int verbosity) {
struct mt allocator ∗mt = xmalloc (sizeof ∗mt);
mt→allocator .libavl malloc = mt allocate;
mt→allocator .libavl free = mt free;
mt→policy = policy ;
mt→arg [0] = arg [0];
mt→arg [1] = arg [1];
mt→verbosity = verbosity ;
mt→head = mt→tail = NULL;
mt→alloc idx = 0;
mt→block cnt = 0;
return mt ;

98 GNU libavl 2.0.1

}
After allocations and deallocations are done, the memory manager must be freed with

mt destroy(), which also reports any memory leaks. Blocks are removed from the block list
as they are freed, so any remaining blocks must be leaked memory:

§129 〈Memory tracker 126 〉 +≡
/∗ Frees and destroys memory tracker mt , reporting any memory leaks. ∗/
void mt destroy (struct mt allocator ∗mt) {

assert (mt != NULL);
if (mt→block cnt == 0) {

if (mt→policy != MT_NO_TRACK && mt→verbosity >= 1)
printf ("ÃÃNoÃmemoryÃleaks.\n");

} else {
struct block ∗iter , ∗next ;
if (mt→policy != MT_SUBALLOC) printf ("ÃÃMemoryÃleaksÃdetected:\n");
for (iter = mt→head ; iter != NULL; iter = next) {

if (mt→policy != MT_SUBALLOC)
printf ("ÃÃÃÃblockÃ#%d:Ã%luÃbytes\n",

iter→idx , (unsigned long) iter→size);
next = iter→next ;
free (iter→content);
free (iter);

}
}
free (mt);

}
For the sake of good encapsulation, mt allocator() returns the struct libavl allocator

associated with a given memory tracker:
§130 〈Memory tracker 126 〉 +≡

/∗ Returns the struct libavl allocator associated with mt . ∗/
void ∗mt allocator (struct mt allocator ∗mt) {

return &mt→allocator ;
}

The allocator function mt allocate() is in charge of implementing the selected alloca-
tion policy. It delegates most of the work to a pair of helper functions new block() and
reject request() and makes use of utility function xmalloc(), a simple wrapper for malloc()
that aborts the program on failure. The implementation is straightforward:

§131 〈Memory tracker 126 〉 +≡
/∗ Creates a new struct block containing size bytes of content

and returns a pointer to content. ∗/
static void ∗new block (struct mt allocator ∗mt , size t size) {

struct block ∗new ;
/∗ Allocate and initialize new struct block. ∗/
new = xmalloc (sizeof ∗new);
new→next = NULL;

Chapter 4: Binary Search Trees 99

new→idx = mt→alloc idx++;
new→size = size;
new→used = 0;
new→content = xmalloc (size);
/∗ Add block to linked list. ∗/
if (mt→head == NULL)

mt→head = new ;
else mt→tail→next = new ;
mt→tail = new ;
/∗ Alert user. ∗/
if (mt→verbosity >= 3)

printf ("ÃÃÃÃblockÃ#%d:ÃallocatedÃ%luÃbytes\n",
new→idx , (unsigned long) size);

/∗ Finish up and return. ∗/
mt→block cnt++;
return new→content ;

}
/∗ Prints a message about a rejected allocation if appropriate. ∗/
static void reject request (struct mt allocator ∗mt , size t size) {

if (mt→verbosity >= 2)
printf ("ÃÃÃÃblockÃ#%d:ÃrejectedÃrequestÃforÃ%luÃbytes\n",

mt→alloc idx++, (unsigned long) size);
}
/∗ Allocates and returns a block of size bytes. ∗/
static void ∗mt allocate (struct libavl allocator ∗allocator , size t size) {

struct mt allocator ∗mt = (struct mt allocator ∗) allocator ;
/∗ Special case. ∗/
if (size == 0)

return NULL;
switch (mt→policy) {

case MT_TRACK: return new block (mt , size);
case MT_NO_TRACK: return xmalloc (size);
case MT_FAIL_COUNT:

if (mt→arg [MT_COUNT] == 0) {
reject request (mt , size);
return NULL;

}
mt→arg [MT_COUNT]−−;
return new block (mt , size);

case MT_FAIL_PERCENT:
if (rand () / (RAND_MAX / 100 + 1) < mt→arg [MT_PERCENT]) {

reject request (mt , size);
return NULL;

}
else return new block (mt , size);

100 GNU libavl 2.0.1

case MT_SUBALLOC:
if (mt→tail == NULL
|| mt→tail→used + size > (size t) mt→arg [MT_BLOCK_SIZE])
new block (mt , mt→arg [MT_BLOCK_SIZE]);

if (mt→tail→used + size <= (size t) mt→arg [MT_BLOCK_SIZE]) {
void ∗p = (char ∗) mt→tail→content + mt→tail→used ;
size = ((size + mt→arg [MT_ALIGN] − 1)

/ mt→arg [MT_ALIGN] ∗ mt→arg [MT_ALIGN]);
mt→tail→used += size;
if (mt→verbosity >= 3)

printf ("ÃÃÃÃblockÃ#%d:ÃsuballocatedÃ%luÃbytes\n",
mt→tail→idx , (unsigned long) size);

return p;
}
else fail ("blocksizeÃ%luÃtooÃsmallÃforÃ%lu-byteÃallocation",

(unsigned long) mt→tail→size, (unsigned long) size);

default: assert (0);
}

}
The corresponding function mt free() searches the block list for the specified block,

removes it, and frees the associated memory. It reports an error if the block is not in the
list:

§132 〈Memory tracker 126 〉 +≡
/∗ Releases block previously returned by mt allocate(). ∗/
static void mt free (struct libavl allocator ∗allocator , void ∗block) {

struct mt allocator ∗mt = (struct mt allocator ∗) allocator ;
struct block ∗iter , ∗prev ;

/∗ Special cases. ∗/
if (block == NULL || mt→policy == MT_NO_TRACK) {

free (block);
return;

}
if (mt→policy == MT_SUBALLOC)

return;

/∗ Search for block within the list of allocated blocks. ∗/
for (prev = NULL, iter = mt→head ; iter ; prev = iter , iter = iter→next) {

if (iter→content == block) {
/∗ Block found. Remove it from the list. ∗/
struct block ∗next = iter→next ;

if (prev == NULL)
mt→head = next ;

else prev→next = next ;
if (next == NULL) mt→tail = prev ;

/∗ Alert user. ∗/
if (mt→verbosity >= 4)

Chapter 4: Binary Search Trees 101

printf ("ÃÃÃÃblockÃ#%d:ÃfreedÃ%luÃbytes\n",
iter→idx , (unsigned long) iter→size);

/∗ Free block. ∗/
free (iter→content);
free (iter);
/∗ Finish up and return. ∗/
mt→block cnt−−;
return;

}
}
/∗ Block not in list. ∗/
printf ("ÃÃÃÃattemptÃtoÃfreeÃunknownÃblockÃ%pÃ(alreadyÃfreed?)\n", block);

}
See also: [ISO 1990], sections 6.3.8 and 6.3.9.

Exercises:

1. As its first action, mt allocate() checks for and special-cases a size of 0. Why?

4.14.5 User Interaction

This section briefly discusses Libavl’s data structures and functions for parsing
command-line arguments. For more information on the command-line arguments accepted
by the testing program, refer to the Libavl reference manual.

The main way that the test program receives instructions from the user is through the
set of arguments passed to main(). The program assumes that these arguments can be
controlled easily by the user, presumably through some kind of command-based “shell”
program. It allows for two kinds of options: traditional UNIX “short options” that take
the form ‘-o’ and GNU-style “long options” of the form ‘--option’. Either kind of option
may take an argument.

Options are specified using an array of struct option, terminated by an all-zero structure:
§133 〈Test declarations 121 〉 +≡

/∗ A single command-line option. ∗/
struct option {

const char ∗long name; /∗ Long name ("--name"). ∗/
int short name; /∗ Short name ("-n"); value returned. ∗/
int has arg ; /∗ Has a required argument? ∗/

};
There are two public functions in the option parser:

struct option state ∗option init (struct option ∗options, char ∗∗args)
Creates and returns a struct option state, initializing it based on the array of
arguments passed in. This structure is used to keep track of the option parsing
state. Sets options as the set of options to parse.

int option get (struct option state ∗state, char ∗∗argp)
Parses the next option from state and returns the value of the short name
member from its struct option. Sets ∗argp to the option’s argument or NULL if
none. Returns −1 and destroys state if no options remain.

102 GNU libavl 2.0.1

These functions’ implementation are not too interesting for our purposes, so they are
relegated to an appendix. See Section B.1 [Option Parser], page 323, for the full story.

The option parser provides a lot of support for parsing the command line, but of course
the individual options have to be handled once they are retrieved by option get(). The
parse command line() function takes care of the whole process:

void parse command line (char ∗∗args, struct test options ∗options)
Parses the command-line arguments in args[], which must be terminated with
an element set to all zeros, using option init() and option get(). Sets up options
appropriately to correspond.

See Section B.2 [Command-Line Parser], page 326, for source code. The struct
test options initialized by parse command line() is described in detail below.

4.14.6 Utility Functions

The first utility function is compare ints(). This function is not used by 〈 test.c 97 〉
but it is included there because it is used by the test modules for all the individual tree
structures.

§134 〈Test utility functions 134 〉 ≡
/∗ Utility functions. ∗/
〈Comparison function for ints 3 〉
See also §136 and §137.

This code is included in §97.

It is prototyped in 〈 test.h 99 〉:
§135 〈Test prototypes 101 〉 +≡

int compare ints (const void ∗pa, const void ∗pb, void ∗param);
The fail() function prints a provided error message to stderr , formatting it as with

printf (), and terminates the program unsuccessfully:
§136 〈Test utility functions 134 〉 +≡

/∗ Prints message on stderr , which is formatted as for printf (),
and terminates the program unsuccessfully. ∗/

static void fail (const char ∗message, . . .) {
va list args;
fprintf (stderr , "%s:Ã", pgm name);
va start (args, message);
vfprintf (stderr , message, args);
va end (args);
putchar (’\n’);
exit (EXIT_FAILURE);

}
Finally, the xmalloc() function is a malloc() wrapper that aborts the program if allocation

fails:
§137 〈Test utility functions 134 〉 +≡

/∗ Allocates and returns a pointer to size bytes of memory.

Chapter 4: Binary Search Trees 103

Aborts if allocation fails. ∗/
static void ∗xmalloc (size t size) {

void ∗block = malloc (size);
if (block == NULL && size != 0)

fail ("outÃofÃmemory");
return block ;

}

4.14.7 Main Program

Everything comes together in the main program. The test itself (default or overflow) is
selected with enum test:

§138 〈Test declarations 121 〉 +≡
/∗ Test to perform. ∗/
enum test {

TST_CORRECTNESS, /∗ Default tests. ∗/
TST_OVERFLOW, /∗ Stack overflow test. ∗/
TST_NULL /∗ No test, just overhead. ∗/

};
The program’s entire behavior is controlled by struct test options, defined as follows:

§139 〈Test declarations 121 〉 +≡
/∗ Program options. ∗/
struct test options {

enum test test ; /∗ Test to perform. ∗/
enum insert order insert order ; /∗ Insertion order. ∗/
enum delete order delete order ; /∗ Deletion order. ∗/
enum mt policy alloc policy ; /∗ Allocation policy. ∗/
int alloc arg [2]; /∗ Policy arguments. ∗/
int alloc incr ; /∗ Amount to increment alloc arg each iteration. ∗/
int node cnt ; /∗ Number of nodes in tree. ∗/
int iter cnt ; /∗ Number of runs. ∗/
int seed given; /∗ Seed provided on command line? ∗/
unsigned seed ; /∗ Random number seed. ∗/
int verbosity ; /∗ Verbosity level, 0=default. ∗/
int nonstop; /∗ Don’t stop after one error? ∗/

};
The main() function for the test program is perhaps a bit long, but simple. It begins

by parsing the command line and allocating memory, then repeats a loop once for each
repetition of the test. Within the loop, an insertion and a deletion order are selected, the
memory tracker is set up, and test function (either test() or test overflow()) is called.

§140 〈Test main program 140 〉 ≡
int main (int argc, char ∗argv []) {

struct test options opts; /∗ Command-line options. ∗/
int ∗insert , ∗delete; /∗ Insertion and deletion orders. ∗/
int success; /∗ Everything okay so far? ∗/

104 GNU libavl 2.0.1

/∗ Initialize pgm name, using argv [0] if sensible. ∗/
pgm name = argv [0] != NULL && argv [0][0] != ’\0’ ? argv [0] : "bst-test";
/∗ Parse command line into options. ∗/
parse command line (argv , &opts);
if (opts.verbosity >= 0)

fputs ("bst-testÃforÃGNUÃlibavlÃ2.0.1;ÃuseÃ--helpÃtoÃgetÃhelp.\n", stdout);
if (!opts.seed given) opts.seed = time seed () % 32768u;
insert = xmalloc (sizeof ∗insert ∗ opts.node cnt);
delete = xmalloc (sizeof ∗delete ∗ opts.node cnt);
/∗ Run the tests. ∗/
success = 1;
while (opts.iter cnt−−) {

struct mt allocator ∗alloc;
if (opts.verbosity >= 0) {

printf ("TestingÃseed=%u", opts.seed);
if (opts.alloc incr) printf (",ÃallocÃarg=%d", opts.alloc arg [0]);
printf ("...\n");
fflush (stdout);

}
/∗ Generate insertion and deletion order.

Seed them separately to ensure deletion order is
independent of insertion order. ∗/

srand (opts.seed);
gen insertions (opts.node cnt , opts.insert order , insert);
srand (++opts.seed);
gen deletions (opts.node cnt , opts.delete order , insert , delete);
if (opts.verbosity >= 1) {

int i ;
printf ("ÃÃInsertionÃorder:");
for (i = 0; i < opts.node cnt ; i++)

printf ("Ã%d", insert [i]);
printf (".\n");
if (opts.test == TST_CORRECTNESS) {

printf ("DeletionÃorder:");
for (i = 0; i < opts.node cnt ; i++)

printf ("Ã%d", delete[i]);
printf (".\n");

}
}
alloc = mt create (opts.alloc policy , opts.alloc arg , opts.verbosity);
{

int okay ;
struct libavl allocator ∗a = mt allocator (alloc);
switch (opts.test) {

Chapter 4: Binary Search Trees 105

case TST_CORRECTNESS:
okay = test correctness (a, insert , delete, opts.node cnt , opts.verbosity);
break;

case TST_OVERFLOW:
okay = test overflow (a, insert , opts.node cnt , opts.verbosity);
break;

case TST_NULL: okay = 1; break;
default: assert (0);
}

if (okay) {
if (opts.verbosity >= 1)

printf ("ÃÃNoÃerrors.\n");
} else {

success = 0;
printf ("ÃÃError!\n");

}
}
mt destroy (alloc);
opts.alloc arg [0] += opts.alloc incr ;
if (!success && !opts.nonstop)

break;
}
free (delete);
free (insert);
return success ? EXIT_SUCCESS : EXIT_FAILURE;

}
This code is included in §97.

The main program initializes our single global variable, pgm name, which receives the
name of the program at start of execution:

§141 〈Test declarations 121 〉 +≡
/∗ Program name. ∗/
char ∗pgm name;

4.15 Additional Exercises

Exercises:

1. Sentinels were a main theme of the chapter before this one. Figure out how to apply
sentinel techniques to binary search trees. Write routines for search and insertion in such a
binary search tree with sentinel. Test your functions. (You need not make your code fully
generic; e.g., it is acceptable to “hard-code” the data type stored in the tree.)

106 GNU libavl 2.0.1

Chapter 5: AVL Trees 107

5 AVL Trees

In the last chapter, we designed and implemented a table ADT using binary search trees.
We were interested in binary trees from the beginning because of their promise of speed
compared to linear lists.

But we only get these speed improvements if our binary trees are arranged more or less
optimally, with the tree’s height as small as possible. If we insert and delete items in the
tree in random order, then chances are that we’ll come pretty close to this optimal tree.1

In “pathological” cases, search within binary search trees can be as slow as sequential
search, or even slower when the extra bookkeeping needed for a binary tree is taken into
account. For example, after inserting items into a BST in sorted order, we get something
like the vines on the left and the right below. The BST in the middle below illustrates a
more unusual case, a “zig-zag” BST that results from inserting items from alternating ends
of an ordered list.

1

2

3

4

5 1

2

3

4

5

1

2

3

4

5

Unfortunately, these pathological cases can easily come up in practice, because sorted
data in the input to a program is common. We could periodically balance the tree using
some heuristic to detect that it is “too tall”. In the last chapter, in fact, we used a weak
version of this idea, rebalancing when a stack overflow force it. We could abandon the idea
of a binary search tree, using some other data structure. Finally, we could adopt some
modifications to binary search trees that prevent the pathological case from occurring.

For the remainder of this book, we’re only interested in the latter choice. We’ll look at
two sets of rules that, when applied to the basic structure of a binary search tree, ensure
that the tree’s height is kept within a constant factor of the minimum value. Although
this is not as good as keeping the BST’s height at its minimum, it comes pretty close, and
the required operations are much faster. A tree arranged to rules such as these is called a
balanced tree. The operations used for minimizing tree height are said to rebalance the tree,
even though this is different from the sort of rebalancing we did in the previous chapter,
and are said to maintain the tree’s “balance.”

A balanced tree arranged according to the first set of rebalancing rules that we’ll examine
is called an AVL tree, after its inventors, G. M. Adel’son-Vel’skǐı and E. M. Landis. AVL
trees are the subject of this chapter, and the next chapter will discuss red-black trees,
another type of balanced tree.

In the following sections, we’ll construct a table implementation based on AVL trees.
Here’s an outline of the AVL code:

§142 〈 avl.h 142 〉 ≡
1 This seems true intuitively, but there are some difficult mathematics in this area. For details, refer to

[Knuth 1998b] theorem 6.2.2H, [Knuth 1977], and [Knuth 1978].

108 GNU libavl 2.0.1

〈License 1 〉
#ifndef AVL_H
#define AVL_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ avl 14 〉
〈BST maximum height; bst ⇒ avl 28 〉
〈BST table structure; bst ⇒ avl 27 〉
〈AVL node structure 144 〉
〈BST traverser structure; bst ⇒ avl 61 〉
〈Table function prototypes; tbl ⇒ avl 15 〉
#endif /∗ avl.h ∗/

§143 〈 avl.c 143 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include 〈 string.h 〉
#include “avl.h”
〈AVL functions 145 〉
See also: [Knuth 1998b], sections 6.2.2 and 6.2.3; [Cormen 1990], section 13.4.

5.1 Balancing Rule

A binary search tree is an AVL tree if the difference in height between the subtrees of
each of its nodes is between −1 and +1. Said another way, a BST is an AVL tree if it is an
empty tree or if its subtrees are AVL trees and the difference in height between its left and
right subtree is between −1 and +1.

Here are some AVL trees:

1

2

3
1

2

3

4

1

2

3

4

5

These binary search trees are not AVL trees:

1

2

3

1

2

3

4

In an AVL tree, the height of a node’s right subtree minus the height of its left subtree
is called the node’s balance factor. Balance factors are always −1, 0, or +1. They are often
represented as one of the single characters −, 0, or +. Because of their importance in AVL
trees, balance factors will often be shown in this chapter in AVL tree diagrams along with or
instead of data items. Here are the AVL trees from above, but with balance factors shown
in place of data values:

Chapter 5: AVL Trees 109

0

0

0
0

-

-

0

0

0

0

-

0

See also: [Knuth 1998b], section 6.2.3.

5.1.1 Analysis

How good is the AVL balancing rule? That is, before we consider how much complication
it adds to BST operations, what does this balancing rule guarantee about performance?
This is a simple question only if you’re familiar with the mathematics behind computer
science. For our purposes, it suffices to state the results:

An AVL tree with n nodes has height between log2(n + 1) and 1.44 log2(n +
2)− .328. An AVL tree with height h has between 2h+.328/1.44 and 2h−1 nodes.
For comparison, an optimally balanced BST with n nodes has height
dlog2 (n + 1)e. An optimally balanced BST with height h has between 2h−1

and 2h − 1 nodes.
The average speed of a search in a binary tree depends on the tree’s height, so the results

above are quite encouraging: an AVL tree will never be more than about 50% taller than
the corresponding optimally balanced tree. Thus, we have a guarantee of good performance
even in the worst case, and optimal performance in the best case.
See also: [Knuth 1998b], theorem 6.2.3A.

5.2 Data Types

We need to define data types for AVL trees like we did for BSTs. AVL tree nodes contain
all the fields that a BST node does, plus a field recording its balance factor:

§144 〈AVL node structure 144 〉 ≡
/∗ An AVL tree node. ∗/
struct avl node {

struct avl node ∗avl link [2]; /∗ Subtrees. ∗/
void ∗avl data; /∗ Pointer to data. ∗/
signed char avl balance; /∗ Balance factor. ∗/

};
This code is included in §142.

We’re using avl as the prefix for all AVL-related identifiers.
The other data structures for AVL trees are the same as for BSTs.

5.3 Operations

Now we’ll implement for AVL trees all the operations that we did for BSTs. Here’s the
outline. Creation and search of AVL trees is exactly like that for plain BSTs, and the generic
table functions for insertion convenience, assertion, and memory allocation are still relevant,
so we just reuse the code. Of the remaining functions, we will write new implementations
of the insertion and deletion functions and revise the traversal and copy functions.

§145 〈AVL functions 145 〉 ≡

110 GNU libavl 2.0.1

〈BST creation function; bst ⇒ avl 30 〉
〈BST search function; bst ⇒ avl 31 〉
〈AVL item insertion function 146 〉
〈Table insertion convenience functions; tbl ⇒ avl 592 〉
〈AVL item deletion function 164 〉
〈AVL traversal functions 178 〉
〈AVL copy function 185 〉
〈BST destruction function; bst ⇒ avl 84 〉
〈Default memory allocation functions; tbl ⇒ avl 6 〉
〈Table assertion functions; tbl ⇒ avl 594 〉
This code is included in §143.

5.4 Insertion

The insertion function for unbalanced BSTs does not maintain the AVL balancing rule,
so we have to write a new insertion function. But before we get into the nitty-gritty details,
let’s talk in generalities. This is time well spent because we will be able to apply many of
the same insights to AVL deletion and insertion and deletion in red-black trees.

Conceptually, there are two stages to any insertion or deletion operation in a balanced
tree. The first stage may lead to violation of the tree’s balancing rule. If so, we fix it in the
second stage. The insertion or deletion itself is done in the first stage, in much the same
way as in an unbalanced BST, and we may also do a bit of additional bookkeeping work,
such as updating balance factors in an AVL tree, or swapping node “colors” in red-black
trees.

If the first stage of the operation does not lead to a violation of the tree’s balancing rule,
nothing further needs to be done. But if it does, the second stage rearranges nodes and
modifies their attributes to restore the tree’s balance. This process is said to rebalance the
tree. The kinds of rebalancing that might be necessary depend on the way the operation
is performed and the tree’s balancing rule. A well-chosen balancing rule helps to minimize
the necessity for rebalancing.

When rebalancing does become necessary in an AVL or red-black tree, its effects are
limited to the nodes along or near the direct path from the inserted or deleted node up to
the root of the tree. Usually, only one or two of these nodes are affected, but, at most,
one simple manipulation is performed at each of the nodes along this path. This property
ensures that balanced tree operations are efficient (see Exercise 1 for details).

That’s enough theory for now. Let’s return to discussing the details of AVL insertion.
There are four steps in Libavl’s implementation of AVL insertion:
1. Search for the location to insert the new item.
2. Insert the item as a new leaf.
3. Update balance factors in the tree that were changed by the insertion.
4. Rebalance the tree, if necessary.

Steps 1 and 2 are the same as for insertion into a BST. Step 3 performs the additional
bookkeeping alluded to above in the general description of balanced tree operations. Finally,
step 4 rebalances the tree, if necessary, to restore the AVL balancing rule.

Chapter 5: AVL Trees 111

The following sections will cover all the details of AVL insertion. For now, here’s an
outline of avl probe():

§146 〈AVL item insertion function 146 〉 ≡
void ∗∗avl probe (struct avl table ∗tree, void ∗item) {

〈 avl probe() local variables 147 〉
assert (tree != NULL && item != NULL);
〈Step 1: Search AVL tree for insertion point 148 〉
〈Step 2: Insert AVL node 149 〉
〈Step 3: Update balance factors after AVL insertion 150 〉
〈Step 4: Rebalance after AVL insertion 151 〉

}
This code is included in §145.

§147 〈 avl probe() local variables 147 〉 ≡
struct avl node ∗y , ∗z ; /∗ Top node to update balance factor, and parent. ∗/
struct avl node ∗p, ∗q ; /∗ Iterator, and parent. ∗/
struct avl node ∗n; /∗ Newly inserted node. ∗/
struct avl node ∗w ; /∗ New root of rebalanced subtree. ∗/
int dir ; /∗ Direction to descend. ∗/
unsigned char da[AVL_MAX_HEIGHT]; /∗ Cached comparison results. ∗/
int k = 0; /∗ Number of cached results. ∗/
This code is included in §146, §301, and §419.

See also: [Knuth 1998b], algorithm 6.2.3A.

Exercises:

*1. When rebalancing manipulations are performed on the chain of nodes from the inserted
or deleted node to the root, no manipulation takes more than a fixed amount of time. In
other words, individual manipulations do not involve any kind of iteration or loop. What
can you conclude about the speed of an individual insertion or deletion in a large balanced
tree, compared to the best-case speed of an operation for unbalanced BSTs?

5.4.1 Step 1: Search

The search step is an extended version of the corresponding code for BST insertion in
〈BST item insertion function 32 〉. The earlier code had only two variables to maintain: the
current node the direction to descend from p. The AVL code does this, but it maintains some
other variables, too. During each iteration of the for loop, p is the node we are examining,
q is p’s parent, y is the most recently examined node with nonzero balance factor, z is y ’s
parent, and elements 0. . .k − 1 of array da[] record each direction descended, starting from
z , in order to arrive at p. The purposes for many of these variables are surely uncertain
right now, but they will become clear later.

§148 〈Step 1: Search AVL tree for insertion point 148 〉 ≡
z = (struct avl node ∗) &tree→avl root ;
y = tree→avl root ;
dir = 0;
for (q = z , p = y ; p != NULL; q = p, p = p→avl link [dir]) {

112 GNU libavl 2.0.1

int cmp = tree→avl compare (item, p→avl data, tree→avl param);
if (cmp == 0)

return &p→avl data;
if (p→avl balance != 0)

z = q , y = p, k = 0;
da[k++] = dir = cmp > 0;

}
This code is included in §146.

5.4.2 Step 2: Insert

Following the search loop, q is the last non-null node examined, so it is the parent of the
node to be inserted. The code below creates and initializes a new node as a child of q on
side dir , and stores a pointer to it into n. Compare this code for insertion to that within
〈BST item insertion function 32 〉.

§149 〈Step 2: Insert AVL node 149 〉 ≡
n = q→avl link [dir] = tree→avl alloc→libavl malloc (tree→avl alloc, sizeof ∗n);
if (n == NULL)

return NULL;
tree→avl count++;
n→avl data = item;
n→avl link [0] = n→avl link [1] = NULL;
n→avl balance = 0;
if (y == NULL)

return &n→avl data;
This code is included in §146.

Exercises:

1. How can y be NULL? Why is this special-cased?

5.4.3 Step 3: Update Balance Factors

When we add a new node n to an AVL tree, the balance factor of n’s parent must
change, because the new node increases the height of one of the parent’s subtrees. The
balance factor of n’s parent’s parent may need to change, too, depending on the parent’s
balance factor, and in fact the change can propagate all the way up the tree to its root.

At each stage of updating balance factors, we are in a similar situation. First, we are
examining a particular node p that is one of n’s direct ancestors. The first time around,
p is n’s parent, the next time, if necessary, p is n’s grandparent, and so on. Second, the
height of one of p’s subtrees has increased, and which one can be determined using da[].

In general, if the height of p’s left subtree increases, p’s balance factor decreases. On
the other hand, if the right subtree’s height increases, p’s balance factor increases. If we
account for the three possible starting balance factors and the two possible sides, there are
six possibilities. The three of these corresponding to an increase in one subtree’s height are
symmetric with the others that go along with an increase in the other subtree’s height. We
treat these three cases below.

Chapter 5: AVL Trees 113

Case 1: p has balance factor 0

If p had balance factor 0, its new balance factor is − or +, depending on the side of the
root to which the node was added. After that, the change in height propagates up the tree
to p’s parent (unless p is the tree’s root) because the height of the subtree rooted at p’s
parent has also increased.

The example below shows a new node n inserted as the left child of a node with balance
factor 0. On the far left is the original tree before insertion; in the middle left is the tree
after insertion but before any balance factors are adjusted; in the middle right is the tree
after the first adjustment, with p as n’s parent; on the far right is the tree after the second
adjustment, with p as n’s grandparent. Only in the trees on the far left and far right are
all of the balance factors correct.

0

0

0
⇒

0n

0

0

0 ⇒

0n

-p

0

0 ⇒

0n

-

-p

0

Case 2: p’s shorter subtree has increased in height

If the new node was added to p’s shorter subtree, then the subtree has become more
balanced and its balance factor becomes 0. If p started out with balance factor +, this
means the new node is in p’s left subtree. If p had a − balance factor, this means the new
node is in the right subtree. Since tree p has the same height as it did before, the change
does not propagate up the tree any farther, and we are done. Here’s an example that shows
pre-insertion and post-balance factor updating views:

+

0

0

+

0

⇒ +

0

0

0n

0p

0

Case 3: p’s taller subtree has increased in height

If the new node was added on the taller side of a subtree with nonzero balance factor,
the balance factor becomes +2 or −2. This is a problem, because balance factors in AVL
trees must be between −1 and +1. We have to rebalance the tree in this case. We will cover
rebalancing later. For now, take it on faith that rebalancing does not increase the height of
subtree p as a whole, so there is no need to propagate changes any farther up the tree.

Here’s an example of an insertion that leads to rebalancing. On the left is the tree before
insertion; in the middle is the tree after insertion and updating balance factors; on the right
is the tree after rebalancing to. The −2 balance factor is shown as two minus signs (−−).
The rebalanced tree is the same height as the original tree before insertion.

0

-
⇒

0n

-

--

⇒
0n

0

0

114 GNU libavl 2.0.1

As another demonstration that the height of a rebalanced subtree does not change after
insertion, here’s a similar example that has one more layer of nodes. The trees below follow
the same pattern as the ones above, but the rebalanced subtree has a parent. Even though
the tree’s root has the wrong balance factor in the middle diagram, it turns out to be correct
after rebalancing.

0

-

-

0 ⇒

0n

-

--

-

0
⇒

0n

0

0

-

0

Implementation

Looking at the rules above, we can see that only in case 1, where p’s balance factor is
0, do changes to balance factors continue to propagate upward in the tree. So we can start
from n’s parent and move upward in the tree, handling case 1 each time, until we hit a
nonzero balance factor, handle case 2 or case 3 at that node, and we’re done (except for
possible rebalancing afterward).

Wait a second—there is no efficient way to move upward in a binary search tree!2 Fortu-
nately, there is another approach we can use. Remember the extra code we put into 〈Step
1: Search AVL tree for insertion point 148 〉? This code kept track of the last node we’d
passed through that had a nonzero balance factor as s. We can use s to move downward,
instead of upward, through the nodes whose balance factors are to be updated.

Node s itself is the topmost node to be updated; when we arrive at node n, we know
we’re done. We also kept track of the directions we moved downward in da[]. Suppose that
we’ve got a node p whose balance factor is to be updated and a direction d that we moved
from it. We know that if we moved down to the left (d == 0) then the balance factor must
be decreased, and that if we moved down to the right (d == 1) then the balance factor
must be increased.

Now we have enough knowledge to write the code to update balance factors. The results
are almost embarrassingly short:

§150 〈Step 3: Update balance factors after AVL insertion 150 〉 ≡
for (p = y , k = 0; p != n; p = p→avl link [da[k]], k++)

if (da[k] == 0)
p→avl balance−−;

else p→avl balance++;

This code is included in §146, §301, and §419.

Now p points to the new node as a consequence of the loop’s exit condition. Variable
p will not be modified again in this function, so it is used in the function’s final return
statement to take the address of the new node’s avl data member (see 〈AVL item insertion
function 146 〉 above).

2 We could make a list of the nodes as we move down the tree and reuse it on the way back up. We’ll do
that for deletion, but there’s a simpler way for insertion, so keep reading.

Chapter 5: AVL Trees 115

Exercises:

1. Can case 3 be applied to the parent of the newly inserted node?

2. For each of the AVL trees below, add a new node with a value smaller than any already
in the tree and update the balance factors of the existing nodes. For each balance factor
that changes, indicate the numbered case above that applies. Which of the trees require
rebalancing after the insertion?

+

0

0

0

- 0

+

0

0

0
0

-

3. Earlier versions of Libavl used chars, not unsigned chars, to cache the results of compar-
isons, as the elements of da[] are used here. At some warning levels, this caused the GNU
C compiler to emit the warning “array subscript has type ‘char’ ” when it encountered
expressions like q→avl link [da[k]]. Explain why this can be a useful warning message.

4. If our AVL trees won’t ever have a height greater than 32, then we can portably use the
bits in a single unsigned long to compactly store what the entire da[] array does. Write
a new version of step 3 to use this form, along with any necessary modifications to other
steps and avl probe()’s local variables.

5.4.4 Step 4: Rebalance

We’ve covered steps 1 through 3 so far. Step 4, rebalancing, is somewhat complicated,
but it’s the key to the entire insertion procedure. It is also similar to, but simpler than,
other rebalancing procedures we’ll see later. As a result, we’re going to discuss it in detail.
Follow along carefully and it should all make sense.

Before proceeding, let’s briefly review the circumstances under which we need to rebal-
ance. Looking back a few sections, we see that there is only one case where this is required:
case 3, when the new node is added in the taller subtree of a node with nonzero balance
factor.

Case 3 is the case where y has a −2 or +2 balance factor after insertion. For now, we’ll
just consider the −2 case, because we can write code for the +2 case later in a mechanical
way by applying the principle of symmetry. In accordance with this idea, step 4 branches
into three cases immediately, one for each rebalancing case and a third that just returns
from the function if no rebalancing is necessary:

§151 〈Step 4: Rebalance after AVL insertion 151 〉 ≡
if (y→avl balance == −2)

{ 〈Rebalance AVL tree after insertion in left subtree 152 〉 }
else if (y→avl balance == +2)

{ 〈Rebalance AVL tree after insertion in right subtree 157 〉 }
else return &n→avl data;

See also §153 and §154.

This code is included in §146.

116 GNU libavl 2.0.1

We will call y ’s left child x . The new node is somewhere in the subtrees of x . There
are now only two cases of interest, distinguished on whether x has a + or − balance factor.
These cases are almost entirely separate:

§152 〈Rebalance AVL tree after insertion in left subtree 152 〉 ≡
struct avl node ∗x = y→avl link [0];
if (x→avl balance == −1)

{ 〈Rotate right at y in AVL tree 155 〉 }
else { 〈Rotate left at x then right at y in AVL tree 156 〉 }
This code is included in §151 and §162.

In either case, w receives the root of the rebalanced subtree, which is used to update the
parent’s pointer to the subtree root (recall that z is the parent of y):

§153 〈Step 4: Rebalance after AVL insertion 151 〉 +≡
z→avl link [y != z→avl link [0]] = w ;

Finally, we increment the generation number, because the tree’s structure has changed.
Then we’re done and we return to the caller:

§154 〈Step 4: Rebalance after AVL insertion 151 〉 +≡
tree→avl generation++;
return &n→avl data;

Case 1: x has − balance factor

For a − balance factor, we just rotate right at y . Then the entire process, including
insertion and rebalancing, looks like this:

a

0x

b

-y

c ⇒

a*

-x

b

--y

c ⇒ a*

0 x

b

0 y

c

This figure also introduces some new graphical conventions. When both balance factors
and node labels are shown in a figure, node labels are shown beside the node circles, instead
of inside them. Second, the change in subtree a between the first and second diagrams is
indicated by an asterisk (*).3 In this case, it indicates that the new node was inserted in
subtree a.

The code here is similar to rotate right() in the solution to Exercise 4.3-2:

§155 〈Rotate right at y in AVL tree 155 〉 ≡
w = x ;
y→avl link [0] = x→avl link [1];
x→avl link [1] = y ;
x→avl balance = y→avl balance = 0;

This code is included in §152 and §529.

3 A “prime” (′) is traditional, but primes are easy to overlook.

Chapter 5: AVL Trees 117

Case 2: x has + balance factor

This case is just a little more intricate. First, let x ’s right child be w . Either w is the
new node, or the new node is in one of w ’s subtrees. To restore balance, we rotate left at x ,
then rotate right at y (this is a kind of “double rotation”). The process, starting just after
the insertion and showing the results of each rotation, looks like this:

a

+x

b

w

c

--y

d ⇒

a

x

b

w

c

-- y

d ⇒

a

x

b

0 w

c

y

d

At the beginning, the figure does not show the balance factor of w . This is because there
are three possibilities:

Case 2.1: w has balance factor 0.
This means that w is the new node. a, b, c, and d have height 0. After the
rotations, x and y have balance factor 0.

Case 2.2: w has balance factor −.
a, b, and d have height h > 0, and c has height h − 1.

Case 2.3: w has balance factor +.
a, c, and d have height h > 0, and b has height h − 1.

§156 〈Rotate left at x then right at y in AVL tree 156 〉 ≡
assert (x→avl balance == +1);
w = x→avl link [1];
x→avl link [1] = w→avl link [0];
w→avl link [0] = x ;
y→avl link [0] = w→avl link [1];
w→avl link [1] = y ;
if (w→avl balance == −1) x→avl balance = 0, y→avl balance = +1;
else if (w→avl balance == 0) x→avl balance = y→avl balance = 0;
else /∗ w→avl balance == +1 ∗/ x→avl balance = −1, y→avl balance = 0;
w→avl balance = 0;
This code is included in §152, §177, §307, §427, and §530.

Exercises:

1. Why can’t the new node be x rather than a node in x ’s subtrees?

2. Why can’t x have a 0 balance factor?

3. For each subcase of case 2, draw a figure like that given for generic case 2 that shows
the specific balance factors at each step.

4. Explain the expression z→avl link [y != z→avl link [0]] = w in the second part of 〈Step
4: Rebalance after AVL insertion 151 〉 above. Why would it be a bad idea to substitute the
apparent equivalent z→avl link [y == z→avl link [1]] = w?

118 GNU libavl 2.0.1

5. Suppose that we wish to make a copy of an AVL tree, preserving the original tree’s shape,
by inserting nodes from the original tree into a new tree, using avl probe(). Will inserting
the original tree’s nodes in level order (see the answer to Exercise 4.7-4) have the desired
effect?

5.4.5 Symmetric Case

Finally, we need to write code for the case that we chose not to discuss earlier, where the
insertion occurs in the right subtree of y . All we have to do is invert the signs of balance
factors and switch avl link [] indexes between 0 and 1. The results are this:

§157 〈Rebalance AVL tree after insertion in right subtree 157 〉 ≡
struct avl node ∗x = y→avl link [1];
if (x→avl balance == +1)

{ 〈Rotate left at y in AVL tree 158 〉 }
else { 〈Rotate right at x then left at y in AVL tree 159 〉 }
This code is included in §151 and §162.

§158 〈Rotate left at y in AVL tree 158 〉 ≡
w = x ;
y→avl link [1] = x→avl link [0];
x→avl link [0] = y ;
x→avl balance = y→avl balance = 0;

This code is included in §157 and §532.

§159 〈Rotate right at x then left at y in AVL tree 159 〉 ≡
assert (x→avl balance == −1);
w = x→avl link [0];
x→avl link [0] = w→avl link [1];
w→avl link [1] = x ;
y→avl link [1] = w→avl link [0];
w→avl link [0] = y ;
if (w→avl balance == +1) x→avl balance = 0, y→avl balance = −1;
else if (w→avl balance == 0) x→avl balance = y→avl balance = 0;
else /∗ w→avl balance == −1 ∗/ x→avl balance = +1, y→avl balance = 0;
w→avl balance = 0;

This code is included in §157, §174, §310, §428, and §533.

5.4.6 Example

We’re done with writing the code. Now, for clarification, let’s run through an example
designed to need lots of rebalancing along the way. Suppose that, starting with an empty
AVL tree, we insert 6, 5, and 4, in that order. The first two insertions do not require
rebalancing. After inserting 4, rebalancing is needed because the balance factor of node 6
would otherwise become −2, an invalid value. This is case 1, so we perform a right rotation
on 6. So far, the AVL tree has evolved this way:

Chapter 5: AVL Trees 119

6 ⇒
5

6
⇒

4

5

6

⇒
4

5

6

If we now insert 1, then 3, a double rotation (case 2.1) becomes necessary, in which we
rotate left at 1, then rotate right at 4:

1

4

5

6 ⇒
1

3

4

5

6
⇒

1

3

4

5

6
⇒

1

3

4

5

6

Inserting a final item, 2, requires a right rotation (case 1) on 5:

1

2

3

4

5

6
⇒ 1

2

3

4

5

6

5.4.7 Aside: Recursive Insertion

In previous sections we first looked at recursive approaches because they were simpler
and more elegant than iterative solutions. As it happens, the reverse is true for insertion
into an AVL tree. But just for completeness, we will now design a recursive implementation
of avl probe().

Our first task in such a design is to figure out what arguments and return value the
recursive core of the insertion function will have. We’ll begin by considering AVL insertion
in the abstract. Our existing function avl probe() works by first moving down the tree,
from the root to a leaf, then back up the tree, from leaf to root, as necessary to adjust
balance factors or rebalance. In the existing iterative version, down and up movement are
implemented by pushing nodes onto and popping them off from a stack. In a recursive
version, moving down the tree becomes a recursive call, and moving up the tree becomes a
function return.

While descending the tree, the important pieces of information are the tree itself (to
allow for comparisons to be made), the current node, and the data item we’re inserting.
The latter two items need to be modifiable by the function, the former because the tree
rooted at the node may need to be rearranged during a rebalance, and the latter because
of avl probe()’s return value.

While ascending the tree, we’ll still have access to all of this information, but, to allow
for adjustment of balance factors and rebalancing, we also need to know whether the subtree
visited in a nested call became taller. We can use the function’s return value for this.

Finally, we know to stop moving down and start moving up when we find a null pointer
in the tree, which is the place for the new node to be inserted. This suggests itself naturally
as the test used to stop the recursion.

120 GNU libavl 2.0.1

Here is an outline of a recursive insertion function directly corresponding to these con-
siderations:

§160 〈Recursive insertion into AVL tree 160 〉 ≡
static int probe (struct avl table ∗tree, struct avl node ∗∗p, void ∗∗∗data) {

struct avl node ∗y ; /∗ The current node; shorthand for ∗p. ∗/
assert (tree != NULL && p != NULL && data != NULL);
y = ∗p;
if (y == NULL)

{ 〈Found insertion point in recursive AVL insertion 161 〉 }
else /∗ y != NULL ∗/ { 〈Move down then up in recursive AVL insertion 162 〉 }

}
See also §163.

Parameter p is declared as a double pointer (struct avl node ∗∗) and data as a triple
pointer (void ∗∗∗). In both cases, this is because C passes arguments by value, so that
a function modifying one of its arguments produces no change in the value seen in the
caller. As a result, to allow a function to modify a scalar, a pointer to it must be passed
as an argument; to modify a pointer, a double pointer must be passed; to modify a double
pointer, a triple pointer must be passed. This can result in difficult-to-understand code, so
it is often advisable to copy the dereferenced argument into a local variable for read-only
use, as ∗p is copied into y here.

When the insertion point is found, a new node is created and a pointer to it stored into
∗p. Because the insertion causes the subtree to increase in height (from 0 to 1), a value of
1 is then returned:

§161 〈Found insertion point in recursive AVL insertion 161 〉 ≡
y = ∗p = tree→avl alloc→libavl malloc (tree→avl alloc, sizeof ∗y);
if (y == NULL) {

∗data = NULL;
return 0;

}
y→avl data = ∗∗data;
∗data = &y→avl data;
y→avl link [0] = y→avl link [1] = NULL;
y→avl balance = 0;
tree→avl count++;
tree→avl generation++;
return 1;
This code is included in §160.

When we’re not at the insertion point, we move down, then back up. Whether to move
down to the left or the right depends on the value of the item to insert relative to the value
in the current node y . Moving down is the domain of the recursive call to probe(). If the
recursive call doesn’t increase the height of a subtree of y , then there’s nothing further
to do, so we return immediately. Otherwise, on the way back up, it is necessary to at
least adjust y ’s balance factor, and possibly to rebalance as well. If only adjustment of the
balance factor is necessary, it is done and the return value is based on whether this subtree

Chapter 5: AVL Trees 121

has changed height in the process. Rebalancing is accomplished using the same code used
in iterative insertion. A rebalanced subtree has the same height as before insertion, so the
value returned is 0. The details are in the code itself:

§162 〈Move down then up in recursive AVL insertion 162 〉 ≡
struct avl node ∗w ; /∗ New root of this subtree; replaces ∗p. ∗/
int cmp;
cmp = tree→avl compare (∗∗data, y→avl data, tree→avl param);
if (cmp < 0) {

if (probe (tree, &y→avl link [0], data) == 0)
return 0;

if (y→avl balance == +1) {
y→avl balance = 0;
return 0;

}
else if (y→avl balance == 0) {

y→avl balance = −1;
return 1;

} else { 〈Rebalance AVL tree after insertion in left subtree 152 〉 }
} else if (cmp > 0) {

struct avl node ∗r ; /∗ Right child of y , for rebalancing. ∗/
if (probe (tree, &y→avl link [1], data) == 0)

return 0;
if (y→avl balance == −1) {

y→avl balance = 0;
return 0;

}
else if (y→avl balance == 0) {

y→avl balance = +1;
return 1;

} else { 〈Rebalance AVL tree after insertion in right subtree 157 〉 }
} else /∗ cmp == 0 ∗/ {

∗data = &y→avl data;
return 0;

}
∗p = w ;
return 0;
This code is included in §160.

Finally, we need a wrapper function to start the recursion off correctly and deal with
passing back the results:

§163 〈Recursive insertion into AVL tree 160 〉 +≡
/∗ Inserts item into tree and returns a pointer to item’s address.

If a duplicate item is found in the tree,
returns a pointer to the duplicate without inserting item.
Returns NULL in case of memory allocation failure. ∗/

void ∗∗avl probe (struct avl table ∗tree, void ∗item) {

122 GNU libavl 2.0.1

void ∗∗ret = &item;
probe (tree, &tree→avl root , &ret);
return ret ;

}

5.5 Deletion

Deletion in an AVL tree is remarkably similar to insertion. The steps that we go through
are analogous:
1. Search for the item to delete.
2. Delete the item.
3. Update balance factors.
4. Rebalance the tree, if necessary.
5. Finish up and return.

The main difference is that, after a deletion, we may have to rebalance at more than one
level of a tree, starting from the bottom up. This is a bit painful, because it means that we
have to keep track of all the nodes that we visit as we search for the node to delete, so that
we can then move back up the tree. The actual updating of balance factors and rebalancing
steps are similar to those used for insertion.

The following sections cover deletion from an AVL tree in detail. Before we get started,
here’s an outline of the function.

§164 〈AVL item deletion function 164 〉 ≡
void ∗avl delete (struct avl table ∗tree, const void ∗item) {

/∗ Stack of nodes. ∗/
struct avl node ∗pa[AVL_MAX_HEIGHT]; /∗ Nodes. ∗/
unsigned char da[AVL_MAX_HEIGHT]; /∗ avl link [] indexes. ∗/
int k ; /∗ Stack pointer. ∗/
struct avl node ∗p; /∗ Traverses tree to find node to delete. ∗/
int cmp; /∗ Result of comparison between item and p. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search AVL tree for item to delete 165 〉
〈Step 2: Delete item from AVL tree 166 〉
〈Steps 3–4: Update balance factors and rebalance after AVL deletion 171 〉
〈Step 5: Finish up and return after AVL deletion 176 〉

}
This code is included in §145.

See also: [Knuth 1998b], pages 473–474; [Pfaff 1998].

5.5.1 Step 1: Search

The only difference between this search and an ordinary search in a BST is that we have
to keep track of the nodes above the one we’re deleting. We do this by pushing them onto
the stack defined above. Each iteration through the loop compares item to p’s data, pushes

Chapter 5: AVL Trees 123

the node onto the stack, moves down in the proper direction. The first trip through the
loop is something of an exception: we hard-code the comparison result to −1 so that the
pseudo-root node is always the topmost node on the stack. When we find a match, we set
item to the actual data item found, so that we can return it later.

§165 〈Step 1: Search AVL tree for item to delete 165 〉 ≡
k = 0;
p = (struct avl node ∗) &tree→avl root ;
for (cmp = −1; cmp != 0; cmp = tree→avl compare (item, p→avl data, tree→avl param)) {

int dir = cmp > 0;

pa[k] = p;
da[k++] = dir ;

p = p→avl link [dir];
if (p == NULL)

return NULL;
}
item = p→avl data;

This code is included in §164 and §220.

5.5.2 Step 2: Delete

At this point, we’ve identified p as the node to delete. The node on the top of the stack,
da[k − 1], is p’s parent node. There are the same three cases we saw in deletion from an
ordinary BST (see Section 4.8 [Deleting from a BST], page 39), with the addition of code
to copy balance factors and update the stack.

The code for selecting cases is the same as for BSTs:

§166 〈Step 2: Delete item from AVL tree 166 〉 ≡
if (p→avl link [1] == NULL)

{ 〈Case 1 in AVL deletion 168 〉 }
else {

struct avl node ∗r = p→avl link [1];
if (r→avl link [0] == NULL)

{ 〈Case 2 in AVL deletion 169 〉 }
else { 〈Case 3 in AVL deletion 170 〉 }

}
See also §167.

This code is included in §164.

Regardless of the case, we are in the same situation after the deletion: node p has
been removed from the tree and the stack contains k nodes at which rebalancing may be
necessary. Later code may change p to point elsewhere, so we free the node immediately.
A pointer to the item data has already been saved in item (see page 123):

§167 〈Step 2: Delete item from AVL tree 166 〉 +≡
tree→avl alloc→libavl free (tree→avl alloc, p);

124 GNU libavl 2.0.1

Case 1: p has no right child

If p has no right child, then we can replace it with its left child, the same as for BSTs
(see page 39).

§168 〈Case 1 in AVL deletion 168 〉 ≡
pa[k − 1]→avl link [da[k − 1]] = p→avl link [0];
This code is included in §166.

Case 2: p’s right child has no left child

If p has a right child r , which in turn has no left child, then we replace p by r , attaching
p’s left child to r , as we would in an unbalanced BST (see page 40). In addition, r acquires
p’s balance factor, and r must be added to the stack of nodes above the deleted node.

§169 〈Case 2 in AVL deletion 169 〉 ≡
r→avl link [0] = p→avl link [0];
r→avl balance = p→avl balance;
pa[k − 1]→avl link [da[k − 1]] = r ;
da[k] = 1;
pa[k++] = r ;
This code is included in §166.

Case 3: p’s right child has a left child

If p’s right child has a left child, then this is the third and most complicated case. On the
other hand, as a modification from the third case in an ordinary BST deletion (see page 40),
it is rather simple. We’re deleting the inorder successor of p, so we push the nodes above
it onto the stack. The only trickery is that we do not know in advance the node that will
replace p, so we reserve a spot on the stack for it (da[j]) and fill it in later:

§170 〈Case 3 in AVL deletion 170 〉 ≡
struct avl node ∗s;
int j = k++;
for (;;) {

da[k] = 0;
pa[k++] = r ;
s = r→avl link [0];
if (s→avl link [0] == NULL)

break;
r = s;

}
s→avl link [0] = p→avl link [0];
r→avl link [0] = s→avl link [1];
s→avl link [1] = p→avl link [1];
s→avl balance = p→avl balance;
pa[j − 1]→avl link [da[j − 1]] = s;
da[j] = 1;
pa[j] = s;

Chapter 5: AVL Trees 125

This code is included in §166.

Exercises:

1. Write an alternate version of 〈Case 3 in AVL deletion 170 〉 that moves data instead of
pointers, as in Exercise 4.8-2.

2. Why is it important that the item data was saved earlier? (Why couldn’t we save it just
before freeing the node?)

5.5.3 Step 3: Update Balance Factors

When we updated balance factors in insertion, we were lucky enough to know in advance
which ones we’d need to update. Moreover, we never needed to rebalance at more than one
level in the tree for any one insertion. These two factors conspired in our favor to let us do
all the updating of balance factors at once from the top down.

Everything is not quite so simple in AVL deletion. We don’t have any easy way to figure
out during the search process which balance factors will need to be updated, and for that
matter we may need to perform rebalancing at multiple levels. Our strategy must change.

This new approach is not fundamentally different from the previous one. We work from
the bottom up instead of from the top down. We potentially look at each of the nodes along
the direct path from the deleted node to the tree’s root, starting at pa[k − 1], the parent of
the deleted node. For each of these nodes, we adjust its balance factor and possibly perform
rebalancing. After that, if we’re lucky, this was enough to restore the tree’s balancing rule,
and we are finished with updating balance factors and rebalancing. Otherwise, we look at
the next node, repeating the process.

Here is the loop itself with the details abstracted out:
§171 〈Steps 3–4: Update balance factors and rebalance after AVL deletion 171 〉 ≡

assert (k > 0);
while (−−k > 0) {

struct avl node ∗y = pa[k];
if (da[k] == 0)

{ 〈Update y ’s balance factor after left-side AVL deletion 172 〉 }
else { 〈Update y ’s balance factor after right-side AVL deletion 177 〉 }

}
This code is included in §164.

The reason this works is the loop invariants. That is, because each time we look at
a node in order to update its balance factor, the situation is the same. In particular, if
we’re looking at a node pa[k], then we know that it’s because the height of its subtree on
side da[k] decreased, so that the balance factor of node pa[k] needs to be updated. The
rebalancing operations we choose reflect this invariant: there are sometimes multiple valid
ways to rebalance at a given node and propagate the results up the tree, but only one way
to do this while maintaining the invariant. (This is especially true in red-black trees, for
which we will develop code for two possible invariants under insertion and deletion.)

Updating the balance factor of a node after deletion from its left side and right side
are symmetric, so we’ll discuss only the left-side case here and construct the code for the
right-side case later. Suppose we have a node y whose left subtree has decreased in height.

126 GNU libavl 2.0.1

In general, this increases its balance factor, because the balance factor of a node is the
height of its right subtree minus the height of its left subtree. More specifically, there are
three cases, treated individually below.

Case 1: y has − balance factor

If y started with a − balance factor, then its left subtree was taller than its right subtree.
Its left subtree has decreased in height, so the two subtrees must now be the same height
and we set y ’s balance factor to 0. This is between −1 and +1, so there is no need to
rebalance at y . However, binary tree y has itself decreased in height, so that means that
we must rebalance the AVL tree above y as well, so we continue to the next iteration of the
loop.

The diagram below may help in visualization. On the left is shown the original config-
uration of a subtree, where subtree a has height h and subtree b has height h − 1. The
height of a nonempty binary tree is one plus the larger of its subtrees’ heights, so tree y has
height h + 1. The diagram on the right shows the situation after a node has been deleted
from a, reducing that subtree’s height. The new height of tree y is (h − 1) + 1 ≡ h.

a
 h

- y

b
h-1

⇒
a*
h-1

0 y

b
h-1

Case 2: y has 0 balance factor

If y started with a 0 balance factor, and its left subtree decreased in height, then the
result is that its right subtree is now taller than its left subtree, so the new balance factor
is +. However, the overall height of binary tree y has not changed, so no balance factors
above y need to be changed, and we are done, hence we break to exit the loop.

Here’s the corresponding diagram, similar to the one for the previous case. The height
of tree y on both sides of the diagram is h + 1, since y ’s taller subtree in both cases has
height h.

a
h

0 y

b
h

⇒
a*
h-1

+ y

b
 h

Case 3: y has + balance factor

Otherwise, y started with a + balance factor, so the decrease in height of its left subtree,
which was already shorter than its right subtree, causes a violation of the AVL constraint
with a +2 balance factor. We need to rebalance. After rebalancing, we may or may not
have to rebalance further up the tree.

Here’s a diagram of what happens to forcing rebalancing:

Chapter 5: AVL Trees 127

a
h-1

+ y

b
 h

⇒
a*
h-2

++ y

b
 h

Implementation

The implementation is straightforward:

§172 〈Update y ’s balance factor after left-side AVL deletion 172 〉 ≡
y→avl balance++;
if (y→avl balance == +1)

break;
else if (y→avl balance == +2)

{ 〈Step 4: Rebalance after AVL deletion 173 〉 }
This code is included in §171.

5.5.4 Step 4: Rebalance

Now we have to write code to rebalance when it becomes necessary. We’ll use rotations
to do this, as before. Again, we’ll distinguish the cases on the basis of x ’s balance factor,
where x is y ’s right child:

§173 〈Step 4: Rebalance after AVL deletion 173 〉 ≡
struct avl node ∗x = y→avl link [1];
if (x→avl balance == −1)

{ 〈Left-side rebalancing case 1 in AVL deletion 174 〉 }
else { 〈Left-side rebalancing case 2 in AVL deletion 175 〉 }
This code is included in §172.

Case 1: x has − balance factor

If x has a − balance factor, we handle rebalancing in a manner analogous to case 2 for
insertion. In fact, we reuse the code. We rotate right at x , then left at y . w is the left child
of x . The two rotations look like this:

a

++ y

b

w

c

- x

d
⇒ a

++y

b

w

c

x

d

⇒

a

y

b

0 w

c

x

d

§174 〈Left-side rebalancing case 1 in AVL deletion 174 〉 ≡
struct avl node ∗w ;
〈Rotate right at x then left at y in AVL tree 159 〉
pa[k − 1]→avl link [da[k − 1]] = w ;

This code is included in §173.

128 GNU libavl 2.0.1

Case 2: x has + or 0 balance factor

When x ’s balance factor is +, the needed treatment is analogous to Case 1 for insertion.
We simply rotate left at y and update the pointer to the subtree, then update balance
factors. The deletion and rebalancing then look like this:

a

+ y

b

+ x

c

⇒ a*

++ y

b

+ x

c

⇒

a*

0y

b

0x

c

When x ’s balance factor is 0, we perform the same rotation, but the height of the overall
subtree does not change, so we’re done and can exit the loop with break. Here’s what the
deletion and rebalancing look like for this subcase:

a

+ y

b

0 x

c

⇒ a*

++ y

b

0 x

c

⇒

a*

+y

b

-x

c

§175 〈Left-side rebalancing case 2 in AVL deletion 175 〉 ≡
y→avl link [1] = x→avl link [0];
x→avl link [0] = y ;
pa[k − 1]→avl link [da[k − 1]] = x ;
if (x→avl balance == 0) {

x→avl balance = −1;
y→avl balance = +1;
break;

}
else x→avl balance = y→avl balance = 0;
This code is included in §173.

Exercises:

1. In 〈Step 4: Rebalance after AVL deletion 173 〉, we refer to fields in x , the right child of
y , without checking that y has a non-null right child. Why can we assume that node x is
non-null?

2. Describe the shape of a tree that might require rebalancing at every level above a par-
ticular node. Give an example.

5.5.5 Step 5: Finish Up

§176 〈Step 5: Finish up and return after AVL deletion 176 〉 ≡
tree→avl count−−;
tree→avl generation++;
return (void ∗) item;
This code is included in §164.

Chapter 5: AVL Trees 129

5.5.6 Symmetric Case

Here’s the code for the symmetric case, where the deleted node was in the right subtree
of its parent.

§177 〈Update y ’s balance factor after right-side AVL deletion 177 〉 ≡
y→avl balance−−;
if (y→avl balance == −1)

break;
else if (y→avl balance == −2) {

struct avl node ∗x = y→avl link [0];
if (x→avl balance == +1) {

struct avl node ∗w ;
〈Rotate left at x then right at y in AVL tree 156 〉
pa[k − 1]→avl link [da[k − 1]] = w ;

} else {
y→avl link [0] = x→avl link [1];
x→avl link [1] = y ;
pa[k − 1]→avl link [da[k − 1]] = x ;
if (x→avl balance == 0) {

x→avl balance = +1;
y→avl balance = −1;
break;

}
else x→avl balance = y→avl balance = 0;

}
}
This code is included in §171.

5.6 Traversal

Traversal is largely unchanged from BSTs. However, we can be confident that the tree
won’t easily exceed the maximum stack height, because of the AVL balance condition, so
we can omit checking for stack overflow.

§178 〈AVL traversal functions 178 〉 ≡
〈BST traverser refresher; bst ⇒ avl 62 〉
〈BST traverser null initializer; bst ⇒ avl 64 〉
〈AVL traverser least-item initializer 180 〉
〈AVL traverser greatest-item initializer 181 〉
〈AVL traverser search initializer 182 〉
〈AVL traverser insertion initializer 179 〉
〈BST traverser copy initializer; bst ⇒ avl 69 〉
〈AVL traverser advance function 183 〉
〈AVL traverser back up function 184 〉
〈BST traverser current item function; bst ⇒ avl 74 〉
〈BST traverser replacement function; bst ⇒ avl 75 〉
This code is included in §145 and §196.

130 GNU libavl 2.0.1

We do need to make a new implementation of the insertion traverser initializer. Because
insertion into an AVL tree is so complicated, we just write this as a wrapper to avl probe().
There probably wouldn’t be much of a speed improvement by inlining the code anyhow:

§179 〈AVL traverser insertion initializer 179 〉 ≡
void ∗avl t insert (struct avl traverser ∗trav , struct avl table ∗tree, void ∗item) {

void ∗∗p;
assert (trav != NULL && tree != NULL && item != NULL);
p = avl probe (tree, item);
if (p != NULL) {

trav→avl table = tree;
trav→avl node =

((struct avl node ∗) ((char ∗) p − offsetof (struct avl node, avl data)));
trav→avl generation = tree→avl generation − 1;
return ∗p;

} else {
avl t init (trav , tree);
return NULL;

}
}
This code is included in §178.

We will present the rest of the modified functions without further comment.
§180 〈AVL traverser least-item initializer 180 〉 ≡

void ∗avl t first (struct avl traverser ∗trav , struct avl table ∗tree) {
struct avl node ∗x ;
assert (tree != NULL && trav != NULL);
trav→avl table = tree;
trav→avl height = 0;
trav→avl generation = tree→avl generation;
x = tree→avl root ;
if (x != NULL)

while (x→avl link [0] != NULL) {
assert (trav→avl height < AVL_MAX_HEIGHT);
trav→avl stack [trav→avl height++] = x ;
x = x→avl link [0];

}
trav→avl node = x ;
return x != NULL ? x→avl data : NULL;

}
This code is included in §178.

§181 〈AVL traverser greatest-item initializer 181 〉 ≡
void ∗avl t last (struct avl traverser ∗trav , struct avl table ∗tree) {

struct avl node ∗x ;
assert (tree != NULL && trav != NULL);
trav→avl table = tree;

Chapter 5: AVL Trees 131

trav→avl height = 0;
trav→avl generation = tree→avl generation;
x = tree→avl root ;
if (x != NULL)

while (x→avl link [1] != NULL) {
assert (trav→avl height < AVL_MAX_HEIGHT);
trav→avl stack [trav→avl height++] = x ;
x = x→avl link [1];

}
trav→avl node = x ;
return x != NULL ? x→avl data : NULL;

}
This code is included in §178.

§182 〈AVL traverser search initializer 182 〉 ≡
void ∗avl t find (struct avl traverser ∗trav , struct avl table ∗tree, void ∗item) {

struct avl node ∗p, ∗q ;
assert (trav != NULL && tree != NULL && item != NULL);
trav→avl table = tree;
trav→avl height = 0;
trav→avl generation = tree→avl generation;
for (p = tree→avl root ; p != NULL; p = q) {

int cmp = tree→avl compare (item, p→avl data, tree→avl param);
if (cmp < 0) q = p→avl link [0];
else if (cmp > 0) q = p→avl link [1];
else /∗ cmp == 0 ∗/ {

trav→avl node = p;
return p→avl data;

}
assert (trav→avl height < AVL_MAX_HEIGHT);
trav→avl stack [trav→avl height++] = p;

}
trav→avl height = 0;
trav→avl node = NULL;
return NULL;

}
This code is included in §178.

§183 〈AVL traverser advance function 183 〉 ≡
void ∗avl t next (struct avl traverser ∗trav) {

struct avl node ∗x ;
assert (trav != NULL);
if (trav→avl generation != trav→avl table→avl generation)

trav refresh (trav);
x = trav→avl node;
if (x == NULL) {

132 GNU libavl 2.0.1

return avl t first (trav , trav→avl table);
} else if (x→avl link [1] != NULL) {

assert (trav→avl height < AVL_MAX_HEIGHT);
trav→avl stack [trav→avl height++] = x ;
x = x→avl link [1];
while (x→avl link [0] != NULL) {

assert (trav→avl height < AVL_MAX_HEIGHT);
trav→avl stack [trav→avl height++] = x ;
x = x→avl link [0];

}
} else {

struct avl node ∗y ;
do {

if (trav→avl height == 0) {
trav→avl node = NULL;
return NULL;

}
y = x ;
x = trav→avl stack [−−trav→avl height];

} while (y == x→avl link [1]);
}
trav→avl node = x ;
return x→avl data;

}
This code is included in §178.

§184 〈AVL traverser back up function 184 〉 ≡
void ∗avl t prev (struct avl traverser ∗trav) {

struct avl node ∗x ;
assert (trav != NULL);
if (trav→avl generation != trav→avl table→avl generation)

trav refresh (trav);
x = trav→avl node;
if (x == NULL) {

return avl t last (trav , trav→avl table);
} else if (x→avl link [0] != NULL) {

assert (trav→avl height < AVL_MAX_HEIGHT);
trav→avl stack [trav→avl height++] = x ;
x = x→avl link [0];
while (x→avl link [1] != NULL) {

assert (trav→avl height < AVL_MAX_HEIGHT);
trav→avl stack [trav→avl height++] = x ;
x = x→avl link [1];

}
} else {

struct avl node ∗y ;

Chapter 5: AVL Trees 133

do {
if (trav→avl height == 0) {

trav→avl node = NULL;
return NULL;

}
y = x ;
x = trav→avl stack [−−trav→avl height];

} while (y == x→avl link [0]);
}
trav→avl node = x ;
return x→avl data;

}
This code is included in §178.

Exercises:

1. Explain the meaning of this ugly expression, used in avl t insert():
(struct avl node ∗) ((char ∗) p − offsetof (struct avl node, avl data))

5.7 Copying

Copying an AVL tree is similar to copying a BST. The only important difference is that
we have to copy the AVL balance factor between nodes as well as node data. We don’t
check our stack height here, either.

§185 〈AVL copy function 185 〉 ≡
〈BST copy error helper function; bst ⇒ avl 82 〉
struct avl table ∗avl copy (const struct avl table ∗org , avl copy func ∗copy ,

avl item func ∗destroy , struct libavl allocator ∗allocator) {
struct avl node ∗stack [2 ∗ (AVL_MAX_HEIGHT + 1)];
int height = 0;
struct avl table ∗new ;
const struct avl node ∗x ;
struct avl node ∗y ;
assert (org != NULL);
new = avl create (org→avl compare, org→avl param,

allocator != NULL ? allocator : org→avl alloc);
if (new == NULL)

return NULL;
new→avl count = org→avl count ;
if (new→avl count == 0)

return new ;
x = (const struct avl node ∗) &org→avl root ;
y = (struct avl node ∗) &new→avl root ;
for (;;) {

while (x→avl link [0] != NULL) {
assert (height < 2 ∗ (AVL_MAX_HEIGHT + 1));

134 GNU libavl 2.0.1

y→avl link [0] = new→avl alloc→libavl malloc (new→avl alloc,
sizeof ∗y→avl link [0]);

if (y→avl link [0] == NULL) {
if (y != (struct avl node ∗) &new→avl root) {

y→avl data = NULL;
y→avl link [1] = NULL;

}
copy error recovery (stack , height , new , destroy);
return NULL;

}
stack [height++] = (struct avl node ∗) x ;
stack [height++] = y ;
x = x→avl link [0];
y = y→avl link [0];

}
y→avl link [0] = NULL;

for (;;) {
y→avl balance = x→avl balance;
if (copy == NULL)

y→avl data = x→avl data;
else {

y→avl data = copy (x→avl data, org→avl param);
if (y→avl data == NULL) {

y→avl link [1] = NULL;
copy error recovery (stack , height , new , destroy);
return NULL;

}
}
if (x→avl link [1] != NULL) {

y→avl link [1] = new→avl alloc→libavl malloc (new→avl alloc,
sizeof ∗y→avl link [1]);

if (y→avl link [1] == NULL) {
copy error recovery (stack , height , new , destroy);
return NULL;

}
x = x→avl link [1];
y = y→avl link [1];
break;

}
else y→avl link [1] = NULL;

if (height <= 2)
return new ;

y = stack [−−height];
x = stack [−−height];

}

Chapter 5: AVL Trees 135

}
}
This code is included in §145 and §196.

5.8 Testing

Our job isn’t done until we can demonstrate that our code works. We’ll do this with a
test program built using the framework from the previous chapter (see Section 4.14 [Testing
BST Functions], page 80). All we have to do is produce functions for AVL trees that
correspond to each of those in 〈 bst-test.c 98 〉. This just involves making small changes
to the functions used there. They are presented below without additional comment.

§186 〈 avl-test.c 186 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “avl.h”
#include “test.h”
〈BST print function; bst ⇒ avl 119 〉
〈BST traverser check function; bst ⇒ avl 104 〉
〈Compare two AVL trees for structure and content 187 〉
〈Recursively verify AVL tree structure 188 〉
〈AVL tree verify function 190 〉
〈BST test function; bst ⇒ avl 100 〉
〈BST overflow test function; bst ⇒ avl 122 〉

§187 〈Compare two AVL trees for structure and content 187 〉 ≡
static int compare trees (struct avl node ∗a, struct avl node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

assert (a == NULL && b == NULL);
return 1;

}
if (∗(int ∗) a→avl data != ∗(int ∗) b→avl data
|| ((a→avl link [0] != NULL) != (b→avl link [0] != NULL))
|| ((a→avl link [1] != NULL) != (b→avl link [1] != NULL))
|| a→avl balance != b→avl balance) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%dÃ(bal=%d)Ãb=%dÃ(bal=%d)Ãa:",

∗(int ∗) a→avl data, a→avl balance,
∗(int ∗) b→avl data, b→avl balance);

if (a→avl link [0] != NULL) printf ("l");
if (a→avl link [1] != NULL) printf ("r");
printf ("Ãb:");
if (b→avl link [0] != NULL) printf ("l");
if (b→avl link [1] != NULL) printf ("r");
printf ("\n");

136 GNU libavl 2.0.1

return 0;
}
okay = 1;
if (a→avl link [0] != NULL) okay &= compare trees (a→avl link [0], b→avl link [0]);
if (a→avl link [1] != NULL) okay &= compare trees (a→avl link [1], b→avl link [1]);
return okay ;

}
This code is included in §186.

§188 〈Recursively verify AVL tree structure 188 〉 ≡
/∗ Examines the binary tree rooted at node.

Zeroes ∗okay if an error occurs. Otherwise, does not modify ∗okay .
Sets ∗count to the number of nodes in that tree, including node itself if node != NULL.
Sets ∗height to the tree’s height.
All the nodes in the tree are verified to be at least min but no greater than max . ∗/

static void recurse verify tree (struct avl node ∗node, int ∗okay , size t ∗count ,
int min, int max , int ∗height) {

int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
int subheight [2]; /∗ Heights of subtrees. ∗/
if (node == NULL) {

∗count = 0;
∗height = 0;
return;

}
d = ∗(int ∗) node→avl data;
〈Verify binary search tree ordering 114 〉
recurse verify tree (node→avl link [0], okay , &subcount [0],

min, d − 1, &subheight [0]);
recurse verify tree (node→avl link [1], okay , &subcount [1],

d + 1, max , &subheight [1]);
∗count = 1 + subcount [0] + subcount [1];
∗height = 1 + (subheight [0] > subheight [1] ? subheight [0] : subheight [1]);
〈Verify AVL node balance factor 189 〉

}
This code is included in §186.

§189 〈Verify AVL node balance factor 189 〉 ≡
if (subheight [1] − subheight [0] != node→avl balance) {

printf ("ÃBalanceÃfactorÃofÃnodeÃ%dÃisÃ%d,ÃbutÃshouldÃbeÃ%d.\n",
d , node→avl balance, subheight [1] − subheight [0]);

∗okay = 0;
}
else if (node→avl balance < −1 || node→avl balance > +1) {

printf ("ÃBalanceÃfactorÃofÃnodeÃ%dÃisÃ%d.\n", d , node→avl balance);
∗okay = 0;

}

Chapter 5: AVL Trees 137

This code is included in §188, §332, §451, and §550.

§190 〈AVL tree verify function 190 〉 ≡
static int verify tree (struct avl table ∗tree, int array [], size t n) {

int okay = 1;
〈Check tree→bst count is correct; bst ⇒ avl 110 〉
if (okay) { 〈Check AVL tree structure 191 〉 }
if (okay) { 〈Check that the tree contains all the elements it should; bst ⇒ avl 115 〉 }
if (okay) { 〈Check that forward traversal works; bst ⇒ avl 116 〉 }
if (okay) { 〈Check that backward traversal works; bst ⇒ avl 117 〉 }
if (okay) { 〈Check that traversal from the null element works; bst ⇒ avl 118 〉 }
return okay ;

}
This code is included in §186, §330, §449, and §548.

§191 〈Check AVL tree structure 191 〉 ≡
/∗ Recursively verify tree structure. ∗/
size t count ;
int height ;
recurse verify tree (tree→avl root , &okay , &count , 0, INT_MAX, &height);
〈Check counted nodes 112 〉
This code is included in §190.

138 GNU libavl 2.0.1

Chapter 6: Red-Black Trees 139

6 Red-Black Trees

The last chapter saw us implementing a library for one particular type of balanced trees.
Red-black trees were invented by R. Bayer and studied at length by L. J. Guibas and R.
Sedgewick. This chapter will implement a library for another kind of balanced tree, called
a red-black tree. For brevity, we’ll often abbreviate “red-black” to RB.

Insertion and deletion operations on red-black trees are more complex to describe or to
code than the same operations on AVL trees. Red-black trees also have a higher maximum
height than AVL trees for a given number of nodes. The primary advantage of red-black
trees is that, in AVL trees, deleting one node from a tree containing n nodes may require
log2 n rotations, but deletion in a red-black tree never requires more than three rotations.

The functions for RB trees in this chapter are analogous to those that we developed for
use with AVL trees in the previous chapter. Here’s an outline of the red-black code:

§192 〈 rb.h 192 〉 ≡
〈License 1 〉
#ifndef RB_H
#define RB_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ rb 14 〉
〈RB maximum height 195 〉
〈BST table structure; bst ⇒ rb 27 〉
〈RB node structure 194 〉
〈BST traverser structure; bst ⇒ rb 61 〉
〈Table function prototypes; tbl ⇒ rb 15 〉
#endif /∗ rb.h ∗/

§193 〈 rb.c 193 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include 〈 string.h 〉
#include “rb.h”
〈RB functions 196 〉
See also: [Cormen 1990], chapter 14, “Chapter notes.”

6.1 Balancing Rule

To most clearly express the red-black balancing rule, we need a few new vocabulary
terms. First, define a non-branching node as a node that does not “branch” the binary tree
in different directions, i.e., a node with exactly zero or one children.

Second, a path is a list of one or more nodes in a binary tree where every node in the
list (except the last node, of course) is adjacent in the tree to the one after it. Two nodes
in a tree are considered to be adjacent for this purpose if one is the child of the other.
Furthermore, a simple path is a path that does not contain any given node more than once.

140 GNU libavl 2.0.1

Finally, a node p is a descendant of a second node q if both p and q are the same node,
or if p is located in one of the subtrees of q .

With these definitions in mind, a red-black tree is a binary search tree in which every
node has been labeled with a color, either “red” or “black”, with those colors distributed
according to these two simple rules, which are called the “red-black balancing rules” and
often referenced by number:

1. No red node has a red child.
2. Every simple path from a given node to one of its non-branching node descendants

contains the same number of black nodes.

Any binary search tree that conforms to these rules is a red-black tree. Additionally, all
red-black trees in Libavl share a simple additional property: their roots are black. This
property is not essential, but it does slightly simplify insertion and deletion operations.

To aid in digestion of all these definitions, here are some red-black trees that might be
produced by Libavl:

0

1

2

3

4

5

1

3

2

4

5

6

7

0

1

3

4

5

6

7

In this book, black nodes are colored black and red nodes are colored gray, as shown here.

The three colored BSTs below are not red-black trees. The one on the left violates rule
1, because red node 2 is a child of red node 4. The one in the middle violates rule 2, because
one path from the root has two black nodes (4-2-3) and the other paths from the root down
to a non-branching node (4-2-1, 4-5, 4-5-6) have only one black node. The one on the right
violates rule 2, because the path consisting of only node 1 has only one black node but path
1-2 has two black nodes.

1

2

3

4

5

1

2

3

4

5

6

1

2

See also: [Cormen 1990], section 14.1; [Sedgewick 1998], definitions 13.3 and 13.4.

Exercises:

*1. A red-black tree contains only black nodes. Describe the tree’s shape.

2. Suppose that a red-black tree’s root is red. How can it be transformed into a equivalent
red-black tree with a black root? Does a similar procedure work for changing a RB’s root
from black to red?

3. Suppose we have a perfectly balanced red-black tree with exactly 2n − 1 nodes and a
black root. Is it possible there is another way to arrange colors in a tree of the same shape
that obeys the red-black rules while keeping the root black? Is it possible if we drop the
requirement that the tree be balanced?

Chapter 6: Red-Black Trees 141

6.1.1 Analysis

As we were for AVL trees, we’re interested in what the red-black balancing rule guaran-
tees about performance. Again, we’ll simply state the results:

A red-black tree with n nodes has height at least log2(n + 1) but no more than
2 log2(n + 1). A red-black tree with height h has at least 2h/2 − 1 nodes but no
more than 2h − 1.

For comparison, an optimally balanced BST with n nodes has height
dlog2 (n + 1)e. An optimally balanced BST with height h has between 2h−1

and 2h − 1 nodes.

See also: [Cormen 1990], lemma 14.1; [Sedgewick 1998], property 13.8.

6.2 Data Types

Red-black trees need their own data structure. Otherwise, there’s no appropriate place
to store each node’s color. Here’s a C type for a color and a structure for an RB node, using
the rb prefix that we’ve adopted for this module:

§194 〈RB node structure 194 〉 ≡
/∗ Color of a red-black node. ∗/
enum rb color {

RB_BLACK, /∗ Black. ∗/
RB_RED /∗ Red. ∗/

};
/∗ A red-black tree node. ∗/
struct rb node {

struct rb node ∗rb link [2]; /∗ Subtrees. ∗/
void ∗rb data; /∗ Pointer to data. ∗/
unsigned char rb color ; /∗ Color. ∗/

};
This code is included in §192.

The maximum height for an RB tree is higher than for an AVL tree, because in the
worst case RB trees store nodes less efficiently:

§195 〈RB maximum height 195 〉 ≡
/∗ Maximum RB height. ∗/
#ifndef RB_MAX_HEIGHT
#define RB_MAX_HEIGHT 48
#endif

This code is included in §192, §333, §452, and §551.

The other data structures for RB trees are the same as for BSTs or AVL trees.

Exercises:

1. Why is it okay to have both an enumeration type and a structure member named
rb color?

142 GNU libavl 2.0.1

6.3 Operations

Now we’ll implement for RB trees all the operations that we did for BSTs. Everything
but the insertion and deletion function can be borrowed either from our BST or AVL tree
functions. The copy function is an unusual case: we need it to copy colors, instead of balance
factors, between nodes, so we replace avl balance by rb color in the macro expansion.

§196 〈RB functions 196 〉 ≡
〈BST creation function; bst ⇒ rb 30 〉
〈BST search function; bst ⇒ rb 31 〉
〈RB item insertion function 197 〉
〈Table insertion convenience functions; tbl ⇒ rb 592 〉
〈RB item deletion function 220 〉
〈AVL traversal functions; avl ⇒ rb 178 〉
〈AVL copy function; avl ⇒ rb; avl balance ⇒ rb color 185 〉
〈BST destruction function; bst ⇒ rb 84 〉
〈Default memory allocation functions; tbl ⇒ rb 6 〉
〈Table assertion functions; tbl ⇒ rb 594 〉
This code is included in §193.

6.4 Insertion

The steps for insertion into a red-black tree are similar to those for insertion into an
AVL tree:
1. Search for the location to insert the new item.
2. Insert the item.
3. Rebalance the tree as necessary to satisfy the red-black balance condition.

Red-black node colors don’t need to be updated in the way that AVL balance factors
do, so there is no separate step for updating colors.

Here’s the outline of the function, expressed as code:
§197 〈RB item insertion function 197 〉 ≡

void ∗∗rb probe (struct rb table ∗tree, void ∗item) {
〈 rb probe() local variables 198 〉
〈Step 1: Search RB tree for insertion point 199 〉
〈Step 2: Insert RB node 200 〉
〈Step 3: Rebalance after RB insertion 201 〉
return &n→rb data;

}
This code is included in §196.

§198 〈 rb probe() local variables 198 〉 ≡
struct rb node ∗pa[RB_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[RB_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k ; /∗ Stack height. ∗/
struct rb node ∗p; /∗ Traverses tree looking for insertion point. ∗/
struct rb node ∗n; /∗ Newly inserted node. ∗/

Chapter 6: Red-Black Trees 143

assert (tree != NULL && item != NULL);

This code is included in §33, §197, and §210.

See also: [Cormen 1990], section 14.3; [Sedgewick 1998], program 13.6.

6.4.1 Step 1: Search

The first thing to do is to search for the point to insert the new node. In a manner
similar to AVL deletion, we keep a stack of nodes tracking the path followed to arrive at
the insertion point, so that later we can move up the tree in rebalancing.

§199 〈Step 1: Search RB tree for insertion point 199 〉 ≡
pa[0] = (struct rb node ∗) &tree→rb root ;
da[0] = 0;
k = 1;
for (p = tree→rb root ; p != NULL; p = p→rb link [da[k − 1]]) {

int cmp = tree→rb compare (item, p→rb data, tree→rb param);
if (cmp == 0)

return &p→rb data;
pa[k] = p;
da[k++] = cmp > 0;

}
This code is included in §197 and §210.

6.4.2 Step 2: Insert

§200 〈Step 2: Insert RB node 200 〉 ≡
n = pa[k − 1]→rb link [da[k − 1]] =

tree→rb alloc→libavl malloc (tree→rb alloc, sizeof ∗n);
if (n == NULL)

return NULL;
n→rb data = item;
n→rb link [0] = n→rb link [1] = NULL;
n→rb color = RB_RED;
tree→rb count++;
tree→rb generation++;

This code is included in §197 and §210.

Exercises:

1. Why are new nodes colored red, instead of black?

6.4.3 Step 3: Rebalance

The code in step 2 that inserts a node always colors the new node red. This means that
rule 2 is always satisfied afterward (as long as it was satisfied before we began). On the
other hand, rule 1 is broken if the newly inserted node’s parent was red. In this latter case
we must rearrange or recolor the BST so that it is again an RB tree.

144 GNU libavl 2.0.1

This is what rebalancing does. At each step in rebalancing, we have the invariant that
we just colored a node p red and that p’s parent, the node at the top of the stack, is also red,
a rule 1 violation. The rebalancing step may either clear up the violation entirely, without
introducing any other violations, in which case we are done, or, if that is not possible, it
reduces the violation to a similar violation of rule 1 higher up in the tree, in which case we
go around again.

In no case can we allow the rebalancing step to introduce a rule 2 violation, because
the loop is not prepared to repair that kind of problem: it does not fit the invariant. If
we allowed rule 2 violations to be introduced, we would have to write additional code to
recognize and repair those violations. This extra code would be a waste of space, because
we can do just fine without it. (Incidentally, there is nothing magical about using a rule
1 violation as our rebalancing invariant. We could use a rule 2 violation as our invariant
instead, and in fact we will later write an alternate implementation that does that, in order
to show how it would be done.)

Here is the rebalancing loop. At each rebalancing step, it checks that we have a rule
1 violation by checking the color of pa[k − 1], the node on the top of the stack, and then
divides into two cases, one for rebalancing an insertion in pa[k − 1]’s left subtree and a
symmetric case for the right subtree. After rebalancing it recolors the root of the tree black
just in case the loop changed it to red:

§201 〈Step 3: Rebalance after RB insertion 201 〉 ≡
while (k >= 3 && pa[k − 1]→rb color == RB_RED) {

if (da[k − 2] == 0)
{ 〈Left-side rebalancing after RB insertion 202 〉 }

else { 〈Right-side rebalancing after RB insertion 206 〉 }
}
tree→rb root→rb color = RB_BLACK;
This code is included in §197.

Now for the real work. We’ll look at the left-side insertion case only. Consider the node
that was just recolored red in the last rebalancing step, or if this is the first rebalancing
step, the newly inserted node n. The code does not name this node, but we will refer to it
here as q . We know that q is red and, because the loop condition was met, that its parent
pa[k − 1] is red. Therefore, due to rule 1, q ’s grandparent, pa[k − 2], must be black. After
this, we have three cases, distinguished by the following code:

§202 〈Left-side rebalancing after RB insertion 202 〉 ≡
struct rb node ∗y = pa[k − 2]→rb link [1];
if (y != NULL && y→rb color == RB_RED)

{ 〈Case 1 in left-side RB insertion rebalancing 203 〉 }
else {

struct rb node ∗x ;
if (da[k − 1] == 0)

y = pa[k − 1];
else { 〈Case 3 in left-side RB insertion rebalancing 205 〉 }
〈Case 2 in left-side RB insertion rebalancing 204 〉
break;

}

Chapter 6: Red-Black Trees 145

This code is included in §201.

Case 1: q ’s uncle is red

If q has an “uncle” y , that is, its grandparent has a child on the side opposite q , and y
is red, then rearranging the tree’s color scheme is all that needs to be done, like this:

a

q

b

pa[k-1]

c

pa[k-2]

d

y

e
⇒

a

q

b

pa[k-1]

c

pa[k-2]

d

y

e

Notice the neat way that this preserves the black-height, or the number of black nodes
in any simple path from a given node down to a node with 0 or 1 children, at pa[k − 2].
This ensures that rule 2 is not violated.

After the transformation, if node pa[k − 2]’s parent exists and is red, then we have
to move up the tree and try again. The while loop condition takes care of this test, so
adjusting the stack is all that has to be done in this code segment:

§203 〈Case 1 in left-side RB insertion rebalancing 203 〉 ≡
pa[k − 1]→rb color = y→rb color = RB_BLACK;
pa[k − 2]→rb color = RB_RED;
k −= 2;
This code is included in §202, §207, §342, and §462.

Case 2: q is the left child of pa[k − 1]

If q is the left child of its parent, then we can perform a right rotation at q ’s grandparent,
which we’ll call x , and recolor a couple of nodes. Then we’re all done, because we’ve satisfied
both rules. Here’s a diagram of what’s happened:

a

q

b

ypa[k-1]

c

xpa[k-2]

d ⇒

a

q

b

y

c

x

d

There’s no need to progress farther up the tree, because neither the subtree’s black-
height nor its root’s color have changed. Here’s the corresponding code. Bear in mind that
the break statement is in the enclosing code segment:

§204 〈Case 2 in left-side RB insertion rebalancing 204 〉 ≡
x = pa[k − 2];
x→rb color = RB_RED;
y→rb color = RB_BLACK;
x→rb link [0] = y→rb link [1];

146 GNU libavl 2.0.1

y→rb link [1] = x ;
pa[k − 3]→rb link [da[k − 3]] = y ;
This code is included in §202, §343, and §464.

Case 3: q is the right child of pa[k − 1]

The final case, where q is a right child, is really just a small variant of case 2, so we can
handle it by transforming it into case 2 and sharing code for that case. To transform case
2 to case 3, we just rotate left at q ’s parent, which is then treated as q .

The diagram below shows the transformation from case 3 into case 2. After this trans-
formation, x is relabeled q and y ’s parent is labeled x , then rebalancing continues as shown
in the diagram for case 2, with the exception that pa[k − 1] is not updated to correspond to
y as shown in that diagram. That’s okay because variable y has already been set to point
to the proper node.

a

xpa[k-1]

b

y q

c

pa[k-2]

d ⇒

a

x

b

y

c

d

§205 〈Case 3 in left-side RB insertion rebalancing 205 〉 ≡
x = pa[k − 1];
y = x→rb link [1];
x→rb link [1] = y→rb link [0];
y→rb link [0] = x ;
pa[k − 2]→rb link [0] = y ;
This code is included in §202, §344, and §466.

Exercises:

1. Why is the test k >= 3 on the while loop valid? (Hint: read the code for step 4, below,
first.)

2. Consider rebalancing case 2 and, in particular, what would happen if the root of subtree
d were red. Wouldn’t the rebalancing transformation recolor x as red and thus cause a rule
1 violation?

6.4.4 Symmetric Case

§206 〈Right-side rebalancing after RB insertion 206 〉 ≡
struct rb node ∗y = pa[k − 2]→rb link [0];
if (y != NULL && y→rb color == RB_RED)

{ 〈Case 1 in right-side RB insertion rebalancing 207 〉 }
else {

struct rb node ∗x ;
if (da[k − 1] == 1)

y = pa[k − 1];

Chapter 6: Red-Black Trees 147

else { 〈Case 3 in right-side RB insertion rebalancing 209 〉 }
〈Case 2 in right-side RB insertion rebalancing 208 〉
break;

}
This code is included in §201.

§207 〈Case 1 in right-side RB insertion rebalancing 207 〉 ≡
〈Case 1 in left-side RB insertion rebalancing 203 〉
This code is included in §206, §346, and §463.

§208 〈Case 2 in right-side RB insertion rebalancing 208 〉 ≡
x = pa[k − 2];
x→rb color = RB_RED;
y→rb color = RB_BLACK;
x→rb link [1] = y→rb link [0];
y→rb link [0] = x ;
pa[k − 3]→rb link [da[k − 3]] = y ;
This code is included in §206, §347, and §465.

§209 〈Case 3 in right-side RB insertion rebalancing 209 〉 ≡
x = pa[k − 1];
y = x→rb link [0];
x→rb link [0] = y→rb link [1];
y→rb link [1] = x ;
pa[k − 2]→rb link [1] = y ;
This code is included in §206, §348, and §467.

6.4.5 Aside: Initial Black Insertion

The traditional algorithm for insertion in an RB tree colors new nodes red. This is a
good choice, because it often means that no rebalancing is necessary, but it is not the only
possible choice. This section implements an alternate algorithm for insertion into an RB
tree that colors new nodes black.

The outline is the same as for initial-red insertion. We change the newly inserted node
from red to black and replace the rebalancing algorithm:

§210 〈RB item insertion function, initial black 210 〉 ≡
void ∗∗rb probe (struct rb table ∗tree, void ∗item) {

〈 rb probe() local variables 198 〉
〈Step 1: Search RB tree for insertion point 199 〉
〈Step 2: Insert RB node; RB RED ⇒ RB BLACK 200 〉
〈Step 3: Rebalance after initial-black RB insertion 211 〉
return &n→rb data;

}
The remaining task is to devise the rebalancing algorithm. Rebalancing is always nec-

essary, unless the tree was empty before insertion, because insertion of a black node into a
nonempty tree always violates rule 2. Thus, our invariant is that we have a rule 2 violation
to fix.

148 GNU libavl 2.0.1

More specifically, the invariant, as implemented, is that at the top of each trip through
the loop, stack pa[] contains the chain of ancestors of a node that is the black root of a
subtree whose black-height is 1 more than it should be. We give that node the name q .
There is one easy rebalancing special case: if node q has a black parent, we can just recolor
q as red, and we’re done. Here’s the loop:

§211 〈Step 3: Rebalance after initial-black RB insertion 211 〉 ≡
while (k >= 2) {

struct rb node ∗q = pa[k − 1]→rb link [da[k − 1]];

if (pa[k − 1]→rb color == RB_BLACK) {
q→rb color = RB_RED;
break;

}
if (da[k − 2] == 0)

{ 〈Left-side rebalancing after initial-black RB insertion 212 〉 }
else { 〈Right-side rebalancing after initial-black RB insertion 216 〉 }

}

This code is included in §210.

Consider rebalancing where insertion was on the left side of q ’s grandparent. We know
that q is black and its parent pa[k − 1] is red. Then, we can divide rebalancing into
three cases, described below in detail. (For additional insight, compare these cases to the
corresponding cases for initial-red insertion.)

§212 〈Left-side rebalancing after initial-black RB insertion 212 〉 ≡
struct rb node ∗y = pa[k − 2]→rb link [1];

if (y != NULL && y→rb color == RB_RED)
{ 〈Case 1 in left-side initial-black RB insertion rebalancing 213 〉 }

else {
struct rb node ∗x ;

if (da[k − 1] == 0)
y = pa[k − 1];

else { 〈Case 3 in left-side initial-black RB insertion rebalancing 215 〉 }
〈Case 2 in left-side initial-black RB insertion rebalancing 214 〉

}

This code is included in §211.

Case 1: q ’s uncle is red

If q has an red “uncle” y , then we recolor q red and pa[k − 1] and y black. This fixes
the immediate problem, making the black-height of q equal to its sibling’s, but increases
the black-height of pa[k − 2], so we must repeat the rebalancing process farther up the tree:

Chapter 6: Red-Black Trees 149

a

q

b

pa[k-1]

c

pa[k-2]

d

y

e
⇒

a

q

b

pa[k-1]

c

pa[k-2]

d

y

e

§213 〈Case 1 in left-side initial-black RB insertion rebalancing 213 〉 ≡
pa[k − 1]→rb color = y→rb color = RB_BLACK;
q→rb color = RB_RED;
k −= 2;

This code is included in §212 and §217.

Case 2: q is the left child of pa[k − 1]

If q is a left child, then call q ’s parent y and its grandparent x , rotate right at x , and
recolor q , y , and x . The effect is that the black-heights of all three subtrees is the same as
before q was inserted, so we’re done, and break out of the loop.

a

q

b

ypa[k-1]

c

xpa[k-2]

d ⇒

a

q

b

y

c

x

d

§214 〈Case 2 in left-side initial-black RB insertion rebalancing 214 〉 ≡
x = pa[k − 2];
x→rb color = q→rb color = RB_RED;
y→rb color = RB_BLACK;
x→rb link [0] = y→rb link [1];
y→rb link [1] = x ;
pa[k − 3]→rb link [da[k − 3]] = y ;
break;

This code is included in §212.

Case 3: q is the right child of pa[k − 1]

If q is a right child, then we rotate left at its parent, which we here call x . The result
is in the form for application of case 2, so after the rotation, we relabel the nodes to be
consistent with that case.

a

xpa[k-1]

b

q

c

pa[k-2]

d ⇒

a

x

b

q

c

pa[k-2]

d

150 GNU libavl 2.0.1

§215 〈Case 3 in left-side initial-black RB insertion rebalancing 215 〉 ≡
x = pa[k − 1];
y = pa[k − 2]→rb link [0] = q ;
x→rb link [1] = y→rb link [0];
q = y→rb link [0] = x ;
This code is included in §212.

6.4.5.1 Symmetric Case

§216 〈Right-side rebalancing after initial-black RB insertion 216 〉 ≡
struct rb node ∗y = pa[k − 2]→rb link [0];
if (y != NULL && y→rb color == RB_RED)

{ 〈Case 1 in right-side initial-black RB insertion rebalancing 217 〉 }
else {

struct rb node ∗x ;
if (da[k − 1] == 1)

y = pa[k − 1];
else { 〈Case 3 in right-side initial-black RB insertion rebalancing 219 〉 }
〈Case 2 in right-side initial-black RB insertion rebalancing 218 〉

}
This code is included in §211.

§217 〈Case 1 in right-side initial-black RB insertion rebalancing 217 〉 ≡
〈Case 1 in left-side initial-black RB insertion rebalancing 213 〉
This code is included in §216.

§218 〈Case 2 in right-side initial-black RB insertion rebalancing 218 〉 ≡
x = pa[k − 2];
x→rb color = q→rb color = RB_RED;
y→rb color = RB_BLACK;
x→rb link [1] = y→rb link [0];
y→rb link [0] = x ;
pa[k − 3]→rb link [da[k − 3]] = y ;
break;
This code is included in §216.

§219 〈Case 3 in right-side initial-black RB insertion rebalancing 219 〉 ≡
x = pa[k − 1];
y = pa[k − 2]→rb link [1] = q ;
x→rb link [0] = y→rb link [1];
q = y→rb link [1] = x ;
This code is included in §216.

6.5 Deletion

The process of deletion from an RB tree is very much in line with the other algorithms
for balanced trees that we’ve looked at already. This time, the steps are:

Chapter 6: Red-Black Trees 151

1. Search for the item to delete.
2. Delete the item.
3. Rebalance the tree as necessary.
4. Finish up and return.

Here’s an outline of the code. Step 1 is already done for us, because we can reuse the
search code from AVL deletion.

§220 〈RB item deletion function 220 〉 ≡
void ∗rb delete (struct rb table ∗tree, const void ∗item) {

struct rb node ∗pa[RB_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[RB_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k ; /∗ Stack height. ∗/
struct rb node ∗p; /∗ The node to delete, or a node part way to it. ∗/
int cmp; /∗ Result of comparison between item and p. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search AVL tree for item to delete; avl ⇒ rb 165 〉
〈Step 2: Delete item from RB tree 221 〉
〈Step 3: Rebalance tree after RB deletion 225 〉
〈Step 4: Finish up after RB deletion 232 〉

}
This code is included in §196.

See also: [Cormen 1990], section 14.4.

6.5.1 Step 2: Delete

At this point, p is the node to be deleted and the stack contains all of the nodes on the
simple path from the tree’s root down to p. The immediate task is to delete p. We break
deletion down into the familiar three cases (see Section 4.8 [Deleting from a BST], page 39),
but before we dive into the code, let’s think about the situation.

In red-black insertion, we were able to limit the kinds of violation that could occur to
rule 1 or rule 2, at our option, by choosing the new node’s color. No such luxury is available
in deletion, because colors have already been assigned to all of the nodes. In fact, a naive
approach to deletion can lead to multiple violations in widely separated parts of a tree.
Consider the effects of deletion of node 3 from the following red-black tree tree, supposing
that it is a subtree of some larger tree:

0

1

2

3

4

5

6

7

8

9

If we performed this deletion in a literal-minded fashion, we would end up with the tree
below, with the following violations: rule 1, between node 6 and its child; rule 2, at node 6;

152 GNU libavl 2.0.1

rule 2, at node 4, because the black-height of the subtree as a whole has increased (ignoring
the rule 2 violation at node 6); and rule 1, at node 4, only if the subtree’s parent is red.
The result is difficult to rebalance in general because we have two problem areas to deal
with, one at node 4, one at node 6.

0

1

2

4

5

6

7

8

9

Fortunately, we can make things easier for ourselves. We can eliminate the problem area
at node 4 simply by recoloring it red, the same color as the node it replaced, as shown
below. Then all we have to deal with are the violations at node 6:

0

1

2

4

5

6

7

8

9

This idea holds in general. So, when we replace the deleted node p by a different node
q , we set q ’s color to p’s. Besides that, as an implementation detail, we need to keep track
of the color of the node that was moved, i.e., node q ’s former color. We do this here by
saving it temporarily in p. In other words, when we replace one node by another during
deletion, we swap their colors.

Now we know enough to begin the implementation. While reading this code, keep in
mind that after deletion, regardless of the case selected, the stack contains a list of the
nodes where rebalancing may be required, and da[k − 1] indicates the side of pa[k − 1]
from which a node of color p→rb color was deleted. Here’s an outline of the meat of the
code:

§221 〈Step 2: Delete item from RB tree 221 〉 ≡
if (p→rb link [1] == NULL)

{ 〈Case 1 in RB deletion 222 〉 }
else {

enum rb color t ;
struct rb node ∗r = p→rb link [1];

if (r→rb link [0] == NULL)
{ 〈Case 2 in RB deletion 223 〉 }

else { 〈Case 3 in RB deletion 224 〉 }
}
This code is included in §220.

Case 1: p has no right child

Chapter 6: Red-Black Trees 153

In case 1, p has no right child, so we replace it by its left subtree. As a very special case,
there is no need to do any swapping of colors (see Exercise 1 for details).

§222 〈Case 1 in RB deletion 222 〉 ≡
pa[k − 1]→rb link [da[k − 1]] = p→rb link [0];
This code is included in §221.

Case 2: p’s right child has no left child

In this case, p has a right child r , which in turn has no left child. We replace p by r ,
swap the colors of nodes p and r , and add r to the stack because we may need to rebalance
there. Here’s a pre- and post-deletion diagram that shows one possible set of colors out of
the possibilities. Node p is shown detached after deletion to make it clear that the colors
are swapped:

a

p

r

x

⇒ a

r

x
p

§223 〈Case 2 in RB deletion 223 〉 ≡
r→rb link [0] = p→rb link [0];
t = r→rb color ;
r→rb color = p→rb color ;
p→rb color = t ;
pa[k − 1]→rb link [da[k − 1]] = r ;
da[k] = 1;
pa[k++] = r ;
This code is included in §221.

Case 3: p’s right child has a left child

In this case, p’s right child has a left child. The code here is basically the same as for
AVL deletion. We replace p by its inorder successor s and swap their node colors. Because
they may require rebalancing, we also add all of the nodes we visit to the stack. Here’s a
diagram to clear up matters, again with arbitrary colors:

a

p

s

x

r

b

... c
⇒

a

s

x

r

b

... c p

§224 〈Case 3 in RB deletion 224 〉 ≡

154 GNU libavl 2.0.1

struct rb node ∗s;
int j = k++;
for (;;) {

da[k] = 0;
pa[k++] = r ;
s = r→rb link [0];
if (s→rb link [0] == NULL)

break;
r = s;

}
da[j] = 1;
pa[j] = s;
pa[j − 1]→rb link [da[j − 1]] = s;
s→rb link [0] = p→rb link [0];
r→rb link [0] = s→rb link [1];
s→rb link [1] = p→rb link [1];
t = s→rb color ;
s→rb color = p→rb color ;
p→rb color = t ;
This code is included in §221.

Exercises:

*1. In case 1, why is it unnecessary to swap the colors of p and the node that replaces it?

2. Rewrite 〈Step 2: Delete item from RB tree 221 〉 to replace the deleted node’s rb data by
its successor, then delete the successor, instead of shuffling pointers. (Refer back to Exercise
4.8-3 for an explanation of why this approach cannot be used in Libavl.)

6.5.2 Step 3: Rebalance

At this point, node p has been removed from tree and p→rb color indicates the color of
the node that was removed from the tree. Our first step is to handle one common special
case: if we deleted a red node, no rebalancing is necessary, because deletion of a red node
cannot violate either rule. Here is the code to avoid rebalancing in this special case:

§225 〈Step 3: Rebalance tree after RB deletion 225 〉 ≡
if (p→rb color == RB_BLACK)

{ 〈Rebalance after RB deletion 226 〉 }
This code is included in §220.

On the other hand, if a black node was deleted, then we have more work to do. At
the least, we have a violation of rule 2. If the deletion brought together two red nodes, as
happened in the example in the previous section, there is also a violation of rule 1.

We must now fix both of these problems by rebalancing. This time, the rebalancing loop
invariant is that the black-height of pa[k − 1]’s subtree on side da[k − 1] is 1 less than the
black-height of its other subtree, a rule 2 violation.

There may also be a rule 2 violation, such pa[k − 1] and its child on side da[k − 1],
which we will call x , are both red. (In the first iteration of the rebalancing loop, node x is

Chapter 6: Red-Black Trees 155

the node labeled as such in the diagrams in the previous section.) If this is the case, then
the fix for rule 2 is simple: just recolor x black. This increases the black-height and fixes
any rule 1 violation as well. If we can do this, we’re all done. Otherwise, we have more
work to do.

Here’s the rebalancing loop:
§226 〈Rebalance after RB deletion 226 〉 ≡

for (;;) {
struct rb node ∗x = pa[k − 1]→rb link [da[k − 1]];
if (x != NULL && x→rb color == RB_RED) {

x→rb color = RB_BLACK;
break;

}
if (k < 2)

break;
if (da[k − 1] == 0)

{ 〈Left-side rebalancing after RB deletion 227 〉 }
else { 〈Right-side rebalancing after RB deletion 233 〉 }
k−−;

}
This code is included in §225.

Now we’ll take a detailed look at the rebalancing algorithm. As before, we’ll only examine
the case where the deleted node was in its parent’s left subtree, that is, where da[k − 1] is
0. The other case is similar.

Recall that x is pa[k − 1]→rb link [da[k − 1]] and that it may be a null pointer. In the
left-side deletion case, x is pa[k − 1]’s left child. We now designate x ’s “sibling”, the right
child of pa[k − 1], as w . Jumping right in, here’s an outline of the rebalancing code:

§227 〈Left-side rebalancing after RB deletion 227 〉 ≡
struct rb node ∗w = pa[k − 1]→rb link [1];
if (w→rb color == RB_RED)

{ 〈Ensure w is black in left-side RB deletion rebalancing 228 〉 }
if ((w→rb link [0] == NULL || w→rb link [0]→rb color == RB_BLACK)

&& (w→rb link [1] == NULL || w→rb link [1]→rb color == RB_BLACK))
{ 〈Case 1 in left-side RB deletion rebalancing 229 〉 }

else {
if (w→rb link [1] == NULL || w→rb link [1]→rb color == RB_BLACK)

{ 〈Transform left-side RB deletion rebalancing case 3 into case 2 231 〉 }
〈Case 2 in left-side RB deletion rebalancing 230 〉
break;

}
This code is included in §226.

Case Reduction: Ensure w is black

We know, at this point, that x is a black node or an empty tree. Node w may be red or
black. If w is red, we perform a left rotation at the common parent of x and w , labeled A in

156 GNU libavl 2.0.1

the diagram below, and recolor A and its own newly acquired parent C. Then we reassign
w as the new sibling of x . The effect is to ensure that w is also black, in order to reduce
the number of cases:

x

Apa[k-1]

a

B

b

C w

c

D

d

⇒
x

Apa[k-1]

a

B w

b

C pa[k-2]

c

D

d

Node w must have children because x is black, in order to satisfy rule 2, and w ’s children
must be black because of rule 1.

Here is the code corresponding to this transformation. Because the ancestors of node x
change, pa[] and da[] are updated as well as w .

§228 〈Ensure w is black in left-side RB deletion rebalancing 228 〉 ≡
w→rb color = RB_BLACK;
pa[k − 1]→rb color = RB_RED;

pa[k − 1]→rb link [1] = w→rb link [0];
w→rb link [0] = pa[k − 1];
pa[k − 2]→rb link [da[k − 2]] = w ;

pa[k] = pa[k − 1];
da[k] = 0;
pa[k − 1] = w ;
k++;

w = pa[k − 1]→rb link [1];

This code is included in §227, §358, and §475.

Now we can take care of the three rebalancing cases one by one. Remember that the
situation is a deleted black node in the subtree designated x and the goal is to correct a
rule 2 violation. Although subtree x may be an empty tree, the diagrams below show it as
a black node. That’s okay because the code itself never refers to x . The label is supplied
for the reader’s benefit only.

Case 1: w has no red children

If w doesn’t have any red children, then it can be recolored red. When we do that, the
black-height of the subtree rooted at w has decreased, so we must move up the tree, with
pa[k − 1] becoming the new x , to rebalance at w and x ’s parent.

The parent, labeled B in the diagram below, may be red or black. Its color is not changed
within the code for this case. If it is red, then the next iteration of the rebalancing loop will
recolor it as red immediately and exit. In particular, B will be red if the transformation to
make x black was performed earlier. If, on the other hand, B is black, the loop will continue
as usual.

Chapter 6: Red-Black Trees 157

a

Ax

b

Bpa[k-1]

c

C w

d

⇒

a

A

b

Bx

c

C

d

§229 〈Case 1 in left-side RB deletion rebalancing 229 〉 ≡
w→rb color = RB_RED;
This code is included in §227, §359, §475, and §574.

Case 2: w ’s right child is red

If w ’s right child is red, we can perform a left rotation at pa[k − 1] and recolor some
nodes, and thereby satisfy both of the red-black rules. The loop is then complete. The
transformation looks like this:

a

Ax

b

Bpa[x-1]

c

C w

d

D

e

⇒

a

A

b

B

c

C

d

D

e

The corresponding code is below. The break is supplied by the enclosing code segment
〈Left-side rebalancing after RB deletion 227 〉:

§230 〈Case 2 in left-side RB deletion rebalancing 230 〉 ≡
w→rb color = pa[k − 1]→rb color ;
pa[k − 1]→rb color = RB_BLACK;
w→rb link [1]→rb color = RB_BLACK;
pa[k − 1]→rb link [1] = w→rb link [0];
w→rb link [0] = pa[k − 1];
pa[k − 2]→rb link [da[k − 2]] = w ;
This code is included in §227, §360, and §477.

Case 3: w ’s left child is red

Because the conditions for neither case 1 nor case 2 apply, the only remaining possibility
is that w has a red left child. When this is the case, we can transform it into case 2 by
rotating right at w . This causes w to move to the node that was previously w ’s left child,
in this way:

a

Ax

b

Bpa[k-1]

c

C

d

D w

e
⇒

a

Ax

b

Bpa[k-1]

c

C w

d

D

e

§231 〈Transform left-side RB deletion rebalancing case 3 into case 2 231 〉 ≡
struct rb node ∗y = w→rb link [0];

158 GNU libavl 2.0.1

y→rb color = RB_BLACK;
w→rb color = RB_RED;
w→rb link [0] = y→rb link [1];
y→rb link [1] = w ;
w = pa[k − 1]→rb link [1] = y ;
This code is included in §227, §361, and §479.

6.5.3 Step 4: Finish Up

All that’s left to do is free the node, update counters, and return the deleted item:
§232 〈Step 4: Finish up after RB deletion 232 〉 ≡

tree→rb alloc→libavl free (tree→rb alloc, p);
tree→rb count−−;
tree→rb generation++;
return (void ∗) item;
This code is included in §220.

6.5.4 Symmetric Case

§233 〈Right-side rebalancing after RB deletion 233 〉 ≡
struct rb node ∗w = pa[k − 1]→rb link [0];
if (w→rb color == RB_RED)

{ 〈Ensure w is black in right-side RB deletion rebalancing 234 〉 }
if ((w→rb link [0] == NULL || w→rb link [0]→rb color == RB_BLACK)

&& (w→rb link [1] == NULL || w→rb link [1]→rb color == RB_BLACK))
{ 〈Case 1 in right-side RB deletion rebalancing 235 〉 }

else {
if (w→rb link [0] == NULL || w→rb link [0]→rb color == RB_BLACK)

{ 〈Transform right-side RB deletion rebalancing case 3 into case 2 236 〉 }
〈Case 2 in right-side RB deletion rebalancing 237 〉
break;

}
This code is included in §226.

§234 〈Ensure w is black in right-side RB deletion rebalancing 234 〉 ≡
w→rb color = RB_BLACK;
pa[k − 1]→rb color = RB_RED;
pa[k − 1]→rb link [0] = w→rb link [1];
w→rb link [1] = pa[k − 1];
pa[k − 2]→rb link [da[k − 2]] = w ;
pa[k] = pa[k − 1];
da[k] = 1;
pa[k − 1] = w ;
k++;
w = pa[k − 1]→rb link [0];
This code is included in §233, §364, and §476.

Chapter 6: Red-Black Trees 159

§235 〈Case 1 in right-side RB deletion rebalancing 235 〉 ≡
w→rb color = RB_RED;
This code is included in §233, §365, and §476.

§236 〈Transform right-side RB deletion rebalancing case 3 into case 2 236 〉 ≡
struct rb node ∗y = w→rb link [1];
y→rb color = RB_BLACK;
w→rb color = RB_RED;
w→rb link [1] = y→rb link [0];
y→rb link [0] = w ;
w = pa[k − 1]→rb link [0] = y ;
This code is included in §233, §367, and §480.

§237 〈Case 2 in right-side RB deletion rebalancing 237 〉 ≡
w→rb color = pa[k − 1]→rb color ;
pa[k − 1]→rb color = RB_BLACK;
w→rb link [0]→rb color = RB_BLACK;
pa[k − 1]→rb link [0] = w→rb link [1];
w→rb link [1] = pa[k − 1];
pa[k − 2]→rb link [da[k − 2]] = w ;
This code is included in §233, §366, and §478.

6.6 Testing

Now we’ll present a test program to demonstrate that our code works, using the same
framework that has been used in past chapters. The additional code needed is straightfor-
ward:

§238 〈 rb-test.c 238 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “rb.h”
#include “test.h”
〈BST print function; bst ⇒ rb 119 〉
〈BST traverser check function; bst ⇒ rb 104 〉
〈Compare two RB trees for structure and content 239 〉
〈Recursively verify RB tree structure 240 〉
〈RB tree verify function 244 〉
〈BST test function; bst ⇒ rb 100 〉
〈BST overflow test function; bst ⇒ rb 122 〉

§239 〈Compare two RB trees for structure and content 239 〉 ≡
static int compare trees (struct rb node ∗a, struct rb node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

assert (a == NULL && b == NULL);
return 1;

160 GNU libavl 2.0.1

}
if (∗(int ∗) a→rb data != ∗(int ∗) b→rb data
|| ((a→rb link [0] != NULL) != (b→rb link [0] != NULL))
|| ((a→rb link [1] != NULL) != (b→rb link [1] != NULL))
|| a→rb color != b→rb color) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%d%cÃb=%d%cÃa:",

∗(int ∗) a→rb data, a→rb color == RB_RED ? ’r’ : ’b’,
∗(int ∗) b→rb data, b→rb color == RB_RED ? ’r’ : ’b’);

if (a→rb link [0] != NULL) printf ("l");
if (a→rb link [1] != NULL) printf ("r");
printf ("Ãb:");
if (b→rb link [0] != NULL) printf ("l");
if (b→rb link [1] != NULL) printf ("r");
printf ("\n");
return 0;

}
okay = 1;
if (a→rb link [0] != NULL) okay &= compare trees (a→rb link [0], b→rb link [0]);
if (a→rb link [1] != NULL) okay &= compare trees (a→rb link [1], b→rb link [1]);
return okay ;

}
This code is included in §238.

§240 〈Recursively verify RB tree structure 240 〉 ≡
/∗ Examines the binary tree rooted at node.

Zeroes ∗okay if an error occurs. Otherwise, does not modify ∗okay .
Sets ∗count to the number of nodes in that tree, including node itself if node != NULL.
Sets ∗bh to the tree’s black-height.
All the nodes in the tree are verified to be at least min but no greater than max . ∗/

static void recurse verify tree (struct rb node ∗node, int ∗okay , size t ∗count ,
int min, int max , int ∗bh) {

int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
int subbh[2]; /∗ Black-heights of subtrees. ∗/
if (node == NULL) {

∗count = 0;
∗bh = 0;
return;

}
d = ∗(int ∗) node→rb data;
〈Verify binary search tree ordering 114 〉
recurse verify tree (node→rb link [0], okay , &subcount [0],

min, d − 1, &subbh[0]);
recurse verify tree (node→rb link [1], okay , &subcount [1],

d + 1, max , &subbh[1]);
∗count = 1 + subcount [0] + subcount [1];

Chapter 6: Red-Black Trees 161

∗bh = (node→rb color == RB_BLACK) + subbh[0];
〈Verify RB node color 241 〉
〈Verify RB node rule 1 compliance 242 〉
〈Verify RB node rule 2 compliance 243 〉

}
This code is included in §238.

§241 〈Verify RB node color 241 〉 ≡
if (node→rb color != RB_RED && node→rb color != RB_BLACK) {

printf ("ÃNodeÃ%dÃisÃneitherÃredÃnorÃblackÃ(%d).\n", d , node→rb color);
∗okay = 0;

}
This code is included in §240, §370, §484, and §585.

§242 〈Verify RB node rule 1 compliance 242 〉 ≡
/∗ Verify compliance with rule 1. ∗/
if (node→rb color == RB_RED) {

if (node→rb link [0] != NULL && node→rb link [0]→rb color == RB_RED) {
printf ("ÃRedÃnodeÃ%dÃhasÃredÃleftÃchildÃ%d\n",

d , ∗(int ∗) node→rb link [0]→rb data);
∗okay = 0;

}
if (node→rb link [1] != NULL && node→rb link [1]→rb color == RB_RED) {

printf ("ÃRedÃnodeÃ%dÃhasÃredÃrightÃchildÃ%d\n",
d , ∗(int ∗) node→rb link [1]→rb data);

∗okay = 0;
}

}
This code is included in §240 and §585.

§243 〈Verify RB node rule 2 compliance 243 〉 ≡
/∗ Verify compliance with rule 2. ∗/
if (subbh[0] != subbh[1]) {

printf ("ÃNodeÃ%dÃhasÃtwoÃdifferentÃblack-heights:ÃleftÃbh=%d,Ã"
"rightÃbh=%d\n", d , subbh[0], subbh[1]);

∗okay = 0;
}
This code is included in §240, §370, §484, and §585.

§244 〈RB tree verify function 244 〉 ≡
static int verify tree (struct rb table ∗tree, int array [], size t n) {

int okay = 1;
〈Check tree→bst count is correct; bst ⇒ rb 110 〉
if (okay) { 〈Check root is black 245 〉 }
if (okay) { 〈Check RB tree structure 246 〉 }
if (okay) { 〈Check that the tree contains all the elements it should; bst ⇒ rb 115 〉 }
if (okay) { 〈Check that forward traversal works; bst ⇒ rb 116 〉 }

162 GNU libavl 2.0.1

if (okay) { 〈Check that backward traversal works; bst ⇒ rb 117 〉 }
if (okay) { 〈Check that traversal from the null element works; bst ⇒ rb 118 〉 }
return okay ;

}
This code is included in §238, §368, §482, and §583.

§245 〈Check root is black 245 〉 ≡
if (tree→rb root != NULL && tree→rb root→rb color != RB_BLACK) {

printf ("ÃTree’sÃrootÃisÃnotÃblack.\n");
okay = 0;

}
This code is included in §244.

§246 〈Check RB tree structure 246 〉 ≡
/∗ Recursively verify tree structure. ∗/
size t count ;
int bh;
recurse verify tree (tree→rb root , &okay , &count , 0, INT_MAX, &bh);
〈Check counted nodes 112 〉
This code is included in §244.

Chapter 7: Threaded Binary Search Trees 163

7 Threaded Binary Search Trees

Traversal in inorder, as done by Libavl traversers, is a common operation in a binary
tree. To do this efficiently in an ordinary binary search tree or balanced tree, we need to
maintain a list of the nodes above the current node, or at least a list of nodes still to be
visited. This need leads to the stack used in struct bst traverser and friends.

It’s really too bad that we need such stacks for traversal. First, they take up space.
Second, they’re fragile: if an item is inserted into or deleted from the tree during traversal, or
if the tree is balanced, we have to rebuild the traverser’s stack. In addition, it can sometimes
be difficult to know in advance how tall the stack will need to be, as demonstrated by the
code that we wrote to handle stack overflow.

These problems are important enough that, in this book, we’ll look at two different
solutions. This chapter looks at the first of these, which adds special pointers, each called a
thread, to nodes, producing what is called a threaded binary search tree, threaded tree, or
simply a TBST.1 Later in the book, we’ll examine an alternate and more general solution
using a parent pointer in each node.

Here’s the outline of the TBST code. We’re using the prefix tbst this time:

§247 〈 tbst.h 247 〉 ≡
〈License 1 〉
#ifndef TBST_H
#define TBST_H 1

#include 〈 stddef.h 〉
〈Table types; tbl ⇒ tbst 14 〉
〈TBST table structure 250 〉
〈TBST node structure 249 〉
〈TBST traverser structure 267 〉
〈Table function prototypes; tbl ⇒ tbst 15 〉
〈BST extra function prototypes; bst ⇒ tbst 88 〉
#endif /∗ tbst.h ∗/

§248 〈 tbst.c 248 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “tbst.h”

〈TBST functions 251 〉

7.1 Threads

In an ordinary binary search tree or balanced tree, a lot of the pointer fields go more-or-
less unused. Instead of pointing to somewhere useful, they are used to store null pointers.

1 This usage of “thread” has nothing to do with the idea of a program with multiple “threads of excecution”,
a form of multitasking within a single program.

164 GNU libavl 2.0.1

In a sense, they’re wasted. What if we were to instead use these fields to point elsewhere
in the tree?

This is the idea behind a threaded tree. In a threaded tree, a node’s left child pointer field,
if it would otherwise be a null pointer, is used to point to the node’s inorder predecessor.
An otherwise-null right child pointer field points to the node’s successor. The least-valued
node in a threaded tree has a null pointer for its left thread, and the greatest-valued node
similarly has a null right thread. These two are the only null pointers in a threaded tree.

Here’s a sample threaded tree:

1

2

3

4

5

6

7

8

9

This diagram illustrates the convention used for threads in this book, arrowheads attached
to dotted lines. Null threads in the least and greatest nodes are shown as arrows pointing
into space. This kind of arrow is also used to show threads that point to nodes not shown
in the diagram.

There are some disadvantages to threaded trees. Each node in an unthreaded tree has
only one pointer that leads to it, either from the tree structure or its parent node, but in a
threaded tree some nodes have as many as three pointers leading to them: one from the root
or parent, one from its predecessor’s right thread, and one from its successor’s left thread.
This means that, although traversing a threaded tree is simpler, building and maintaining
a threaded tree is more complicated.

As we learned earlier, any node that has a right child has a successor in its right subtree,
and that successor has no left child. So, a node in an threaded tree has a left thread pointing
back to it if and only if the node has a right child. Similarly, a node has a right thread
pointing to it if and only if the node has a left child. Take a look at the sample tree above
and check these statements for yourself for some of its nodes.
See also: [Knuth 1997], section 2.3.1.

7.2 Data Types

We need two extra fields in the node structure to keep track of whether each link is a
child pointer or a thread. Each of these fields is called a tag. The revised struct tbst node,
along with enum tbst tag for tags, looks like this:

§249 〈TBST node structure 249 〉 ≡
/∗ Characterizes a link as a child pointer or a thread. ∗/
enum tbst tag {

TBST_CHILD, /∗ Child pointer. ∗/
TBST_THREAD /∗ Thread. ∗/

};
/∗ A threaded binary search tree node. ∗/
struct tbst node {

Chapter 7: Threaded Binary Search Trees 165

struct tbst node ∗tbst link [2]; /∗ Subtrees. ∗/
void ∗tbst data; /∗ Pointer to data. ∗/
unsigned char tbst tag [2]; /∗ Tag fields. ∗/

};
This code is included in §247.

Each element of tbst tag [] is set to TBST_CHILD if the corresponding tbst link [] element is a
child pointer, or to TBST_THREAD if it is a thread. The other members of struct tbst node
should be familiar.

We also want a revised table structure, because traversers in threaded trees do not need
a generation number:

§250 〈TBST table structure 250 〉 ≡
/∗ Tree data structure. ∗/
struct tbst table {

struct tbst node ∗tbst root ; /∗ Tree’s root. ∗/
tbst comparison func ∗tbst compare; /∗ Comparison function. ∗/
void ∗tbst param; /∗ Extra argument to tbst compare. ∗/
struct libavl allocator ∗tbst alloc; /∗ Memory allocator. ∗/
size t tbst count ; /∗ Number of items in tree. ∗/

};
This code is included in §247, §297, §333, §372, §415, §452, §486, §519, and §551.

There is no need to define a maximum height for TBST trees because none of the TBST
functions use a stack.

Exercises:

1. We defined enum tbst tag for distinguishing threads from child pointers, but declared
the actual tag members as unsigned char instead. Why?

7.3 Operations

Now that we’ve changed the basic form of our binary trees, we have to rewrite most of
the tree functions. A function designed for use with unthreaded trees will get hopelessly
lost in a threaded tree, because it will follow threads that it thinks are child pointers. The
only functions we can keep are the totally generic functions defined in terms of other table
functions.

§251 〈TBST functions 251 〉 ≡
〈TBST creation function 252 〉
〈TBST search function 253 〉
〈TBST item insertion function 254 〉
〈Table insertion convenience functions; tbl ⇒ tbst 592 〉
〈TBST item deletion function 257 〉
〈TBST traversal functions 268 〉
〈TBST copy function 278 〉
〈TBST destruction function 281 〉
〈TBST balance function 282 〉
〈Default memory allocation functions; tbl ⇒ tbst 6 〉

166 GNU libavl 2.0.1

〈Table assertion functions; tbl ⇒ tbst 594 〉
This code is included in §248.

7.4 Creation

Function tbst create() is the same as bst create() except that a struct tbst table has no
generation number to fill in.

§252 〈TBST creation function 252 〉 ≡
struct tbst table ∗tbst create (tbst comparison func ∗compare, void ∗param,

struct libavl allocator ∗allocator) {
struct tbst table ∗tree;
assert (compare != NULL);
if (allocator == NULL)

allocator = &tbst allocator default ;
tree = allocator→libavl malloc (allocator , sizeof ∗tree);
if (tree == NULL)

return NULL;
tree→tbst root = NULL;
tree→tbst compare = compare;
tree→tbst param = param;
tree→tbst alloc = allocator ;
tree→tbst count = 0;
return tree;

}
This code is included in §251, §300, §336, §375, §418, §455, §489, §522, and §554.

7.5 Search

In searching a TBST we just have to be careful to distinguish threads from child point-
ers. If we hit a thread link, then we’ve run off the bottom of the tree and the search is
unsuccessful. Other that that, a search in a TBST works the same as in any other binary
search tree.

§253 〈TBST search function 253 〉 ≡
void ∗tbst find (const struct tbst table ∗tree, const void ∗item) {

const struct tbst node ∗p;
assert (tree != NULL && item != NULL);
p = tree→tbst root ;
if (p == NULL)

return NULL;
for (;;) {

int cmp, dir ;
cmp = tree→tbst compare (item, p→tbst data, tree→tbst param);
if (cmp == 0)

return p→tbst data;

Chapter 7: Threaded Binary Search Trees 167

dir = cmp > 0;
if (p→tbst tag [dir] == TBST_CHILD)

p = p→tbst link [dir];
else return NULL;

}
}
This code is included in §251, §300, and §336.

7.6 Insertion

It take a little more effort to insert a new node into a threaded BST than into an
unthreaded one, but not much more. The only difference is that we now have to set up the
new node’s left and right threads to point to its predecessor and successor, respectively.

Fortunately, these are easy to figure out. Suppose that new node n is the right child of
its parent p (the other case is symmetric). This means that p is n’s predecessor, because
n is the least node in p’s right subtree. Moreover, n’s successor is the node that was p’s
successor before n was inserted, that is to say, it is the same as p’s former right thread.

Here’s an example that may help to clear up the description. When new node 3 is
inserted as the right child of 2, its left thread points to 2 and its right thread points where
2’s right thread formerly did, to 4:

1

2p

4

5

6

⇒

1

2p

3 n

4

5

6

The following code unifies the left-side and right-side cases using dir , which takes the
value 1 for a right-side insertion, 0 for a left-side insertion. The side opposite dir can then
be expressed simply as !dir .

§254 〈TBST item insertion function 254 〉 ≡
void ∗∗tbst probe (struct tbst table ∗tree, void ∗item) {

struct tbst node ∗p; /∗ Traverses tree to find insertion point. ∗/
struct tbst node ∗n; /∗ New node. ∗/
int dir ; /∗ Side of p on which n is inserted. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search TBST for insertion point 255 〉
〈Step 2: Insert TBST node 256 〉
return &n→tbst data;

}
This code is included in §251.

§255 〈Step 1: Search TBST for insertion point 255 〉 ≡
if (tree→tbst root != NULL)

for (p = tree→tbst root ; ; p = p→tbst link [dir]) {
int cmp = tree→tbst compare (item, p→tbst data, tree→tbst param);

168 GNU libavl 2.0.1

if (cmp == 0)
return &p→tbst data;

dir = cmp > 0;
if (p→tbst tag [dir] == TBST_THREAD)

break;
}

else {
p = (struct tbst node ∗) &tree→tbst root ;
dir = 0;

}
This code is included in §254 and §668.

§256 〈Step 2: Insert TBST node 256 〉 ≡
n = tree→tbst alloc→libavl malloc (tree→tbst alloc, sizeof ∗n);
if (n == NULL)

return NULL;
tree→tbst count++;
n→tbst data = item;
n→tbst tag [0] = n→tbst tag [1] = TBST_THREAD;
n→tbst link [dir] = p→tbst link [dir];
if (tree→tbst root != NULL) {

p→tbst tag [dir] = TBST_CHILD;
n→tbst link [!dir] = p;

}
else n→tbst link [1] = NULL;
p→tbst link [dir] = n;
This code is included in §254, §303, and §339.

See also: [Knuth 1997], algorithm 2.3.1I.

Exercises:

1. What happens if we reverse the order of the final if statement above and the following
assignment?

7.7 Deletion

When we delete a node from a threaded tree, we have to update one or two more pointers
than if it were an unthreaded BST. What’s more, we sometimes have to go to a bit of effort
to track down what pointers these are, because they are in the predecessor and successor
of the node being deleted.

The outline is the same as for deleting a BST node:
§257 〈TBST item deletion function 257 〉 ≡

void ∗tbst delete (struct tbst table ∗tree, const void ∗item) {
struct tbst node ∗p; /∗ Node to delete. ∗/
struct tbst node ∗q ; /∗ Parent of p. ∗/
int dir ; /∗ Index into q→tbst link [] that leads to p. ∗/
assert (tree != NULL && item != NULL);

Chapter 7: Threaded Binary Search Trees 169

〈Find TBST node to delete 258 〉
〈Delete TBST node 259 〉
〈Finish up after deleting TBST node 266 〉

}
This code is included in §251.

We search down the tree to find the item to delete, p. As we do it we keep track of its
parent q and the direction dir that we descended from it. The initial value of q and dir use
the trick seen originally in copying a BST (see Section 4.10.2 [Copying a BST Iteratively],
page 63).

There are nicer ways to do the same thing, though they are not necessarily as efficient.
See the exercises for one possibility.

§258 〈Find TBST node to delete 258 〉 ≡
if (tree→tbst root == NULL)

return NULL;
p = tree→tbst root ;
q = (struct tbst node ∗) &tree→tbst root ;
dir = 0;
for (;;) {

int cmp = tree→tbst compare (item, p→tbst data, tree→tbst param);
if (cmp == 0)

break;
dir = cmp > 0;
if (p→tbst tag [dir] == TBST_THREAD)

return NULL;
q = p;
p = p→tbst link [dir];

}
item = p→tbst data;

This code is included in §257.

The cases for deletion from a threaded tree are a bit different from those for an un-
threaded tree. The key point to keep in mind is that a node with n children has n threads
pointing to it that must be updated when it is deleted. Let’s look at the cases in detail
now.

Here’s the outline:
§259 〈Delete TBST node 259 〉 ≡

if (p→tbst tag [1] == TBST_THREAD) {
if (p→tbst tag [0] == TBST_CHILD)

{ 〈Case 1 in TBST deletion 260 〉 }
else { 〈Case 2 in TBST deletion 261 〉 }

} else {
struct tbst node ∗r = p→tbst link [1];
if (r→tbst tag [0] == TBST_THREAD)

{ 〈Case 3 in TBST deletion 262 〉 }
else { 〈Case 4 in TBST deletion 263 〉 }

170 GNU libavl 2.0.1

}
This code is included in §257.

Case 1: p has a right thread and a left child

If p has a right thread and a left child, then we replace it by its left child. We also
replace its predecessor t ’s right thread by p’s right thread. In the most general subcase, the
whole operation looks something like this:

r

s

t

u

v

x

p

q

⇒ r

s

t

u

v

x

q

On the other hand, it can be as simple as this:

x

p

q

⇒
x

q

Both of these subcases, and subcases in between them in complication, are handled by the
same code:

§260 〈Case 1 in TBST deletion 260 〉 ≡
struct tbst node ∗t = p→tbst link [0];
while (t→tbst tag [1] == TBST_CHILD)

t = t→tbst link [1];
t→tbst link [1] = p→tbst link [1];
q→tbst link [dir] = p→tbst link [0];
This code is included in §259 and §314.

Case 2: p has a right thread and a left thread

If p is a leaf, then no threads point to it, but we must change its parent q ’s pointer to
p to a thread, pointing to the same place that the corresponding thread of p pointed. This
is easy, and typically looks something like this:

q

p
⇒ q

There is one special case, which comes up when q is the pseudo-node used for the parent
of the root. We can’t access tbst tag [] in this “node”. Here’s the code:

Chapter 7: Threaded Binary Search Trees 171

§261 〈Case 2 in TBST deletion 261 〉 ≡
q→tbst link [dir] = p→tbst link [dir];
if (q != (struct tbst node ∗) &tree→tbst root)

q→tbst tag [dir] = TBST_THREAD;

This code is included in §259 and §315.

Case 3: p’s right child has a left thread

If p has a right child r , and r itself has a left thread, then we delete p by moving r into
its place. Here’s an example where the root node is deleted:

1

2 p

3 r

4

5

6

⇒ 1

3 r

4

5

6

This just involves changing q ’s right link to point to r , copying p’s left link and tag
into r , and fixing any thread that pointed to p so that it now points to r . The code is
straightforward:

§262 〈Case 3 in TBST deletion 262 〉 ≡
r→tbst link [0] = p→tbst link [0];
r→tbst tag [0] = p→tbst tag [0];
if (r→tbst tag [0] == TBST_CHILD) {

struct tbst node ∗t = r→tbst link [0];
while (t→tbst tag [1] == TBST_CHILD)

t = t→tbst link [1];
t→tbst link [1] = r ;

}
q→tbst link [dir] = r ;

This code is included in §259 and §316.

Case 4: p’s right child has a left child

If p has a right child, which in turn has a left child, we arrive at the most complicated
case. It corresponds to case 3 in deletion from an unthreaded BST. The solution is to find
p’s successor s and move it in place of p. In this case, r is s’s parent node, not necessarily
p’s right child.

There are two subcases here. In the first, s has a right child. In that subcase, s’s own
successor’s left thread already points to s, so we need not adjust any threads. Here’s an
example of this subcase. Notice how the left thread of node 3, s’s successor, already points
to s.

172 GNU libavl 2.0.1

0

1 p

2 s

3

4r

5

⇒
0

2 s

3

4r

5

The second subcase comes up when s has a right thread. Because s also has a left thread,
this means that s is a leaf. This subcase requires us to change r ’s left link to a thread to
its predecessor, which is now s. Here’s a continuation of the previous example, showing
deletion of the new root, node 2:

0

2 p

3 s

4r

5
⇒ 0

3 s

4 r

5

The first part of the code handles finding r and s:
§263 〈Case 4 in TBST deletion 263 〉 ≡

struct tbst node ∗s;
for (;;) {

s = r→tbst link [0];
if (s→tbst tag [0] == TBST_THREAD)

break;
r = s;

}
See also §264 and §265.

This code is included in §259 and §317.

Next, we update r , handling each of the subcases:
§264 〈Case 4 in TBST deletion 263 〉 +≡

if (s→tbst tag [1] == TBST_CHILD)
r→tbst link [0] = s→tbst link [1];

else {
r→tbst link [0] = s;
r→tbst tag [0] = TBST_THREAD;

}
Finally, we copy p’s links and tags into s and chase down and update any right thread

in s’s left subtree, then replace the pointer from q down to s:
§265 〈Case 4 in TBST deletion 263 〉 +≡

s→tbst link [0] = p→tbst link [0];
if (p→tbst tag [0] == TBST_CHILD) {

struct tbst node ∗t = p→tbst link [0];
while (t→tbst tag [1] == TBST_CHILD)

t = t→tbst link [1];

Chapter 7: Threaded Binary Search Trees 173

t→tbst link [1] = s;
s→tbst tag [0] = TBST_CHILD;

}
s→tbst link [1] = p→tbst link [1];
s→tbst tag [1] = TBST_CHILD;
q→tbst link [dir] = s;

We finish up by deallocating the node, decrementing the tree’s item count, and returning
the deleted item’s data:

§266 〈Finish up after deleting TBST node 266 〉 ≡
tree→tbst alloc→libavl free (tree→tbst alloc, p);
tree→tbst count−−;
return (void ∗) item;
This code is included in §257.

Exercises:

*1. In a threaded BST, there is an efficient algorithm to find the parent of a given node.
Use this algorithm to reimplement 〈Find TBST node to delete 258 〉.
2. In case 2, we must handle q as the pseudo-root as a special case. Can we rearrange the
TBST data structures to avoid this?

3. Rewrite case 4 to replace the deleted node’s tbst data by its successor and actually
delete the successor, instead of moving around pointers. (Refer back to Exercise 4.8-3 for
an explanation of why this approach cannot be used in Libavl.)

*4. Many of the cases in deletion from a TBST require searching down the tree for the
nodes with threads to the deleted node. Show that this adds only a constant number of
operations to the deletion of a randomly selected node, compared to a similar deletion in
an unthreaded tree.

7.8 Traversal

Traversal in a threaded BST is much simpler than in an unthreaded one. This is, indeed,
much of the point to threading our trees. This section implements all of the Libavl traverser
functions for threaded trees.

Suppose we wish to find the successor of an arbitrary node in a threaded tree. If the
node has a right child, then the successor is the smallest item in the node’s right subtree.
Otherwise, the node has a right thread, and its sucessor is simply the node to which the
right thread points. If the right thread is a null pointer, then the node is the largest in the
tree. We can find the node’s predecessor in a similar manner.

We don’t ever need to know the parent of a node to traverse the threaded tree, so there’s
no need to keep a stack. Moreover, because a traverser has no stack to be corrupted by
changes to its tree, there is no need to keep or compare generation numbers. Therefore,
this is all we need for a TBST traverser structure:

§267 〈TBST traverser structure 267 〉 ≡
/∗ TBST traverser structure. ∗/
struct tbst traverser {

174 GNU libavl 2.0.1

struct tbst table ∗tbst table; /∗ Tree being traversed. ∗/
struct tbst node ∗tbst node; /∗ Current node in tree. ∗/

};
This code is included in §247, §297, §333, §372, §415, §452, §486, §519, and §551.

The traversal functions are collected together here. A few of the functions are imple-
mented directly in terms of their unthreaded BST counterparts, but most must be reimple-
mented:

§268 〈TBST traversal functions 268 〉 ≡
〈TBST traverser null initializer 269 〉
〈TBST traverser first initializer 270 〉
〈TBST traverser last initializer 271 〉
〈TBST traverser search initializer 272 〉
〈TBST traverser insertion initializer 273 〉
〈TBST traverser copy initializer 274 〉
〈TBST traverser advance function 275 〉
〈TBST traverser back up function 276 〉
〈BST traverser current item function; bst ⇒ tbst 74 〉
〈BST traverser replacement function; bst ⇒ tbst 75 〉
This code is included in §251, §300, and §336.

See also: [Knuth 1997], algorithm 2.3.1S.

7.8.1 Starting at the Null Node

§269 〈TBST traverser null initializer 269 〉 ≡
void tbst t init (struct tbst traverser ∗trav , struct tbst table ∗tree) {

trav→tbst table = tree;
trav→tbst node = NULL;

}
This code is included in §268, §395, §502, and §546.

7.8.2 Starting at the First Node

§270 〈TBST traverser first initializer 270 〉 ≡
void ∗tbst t first (struct tbst traverser ∗trav , struct tbst table ∗tree) {

assert (tree != NULL && trav != NULL);
trav→tbst table = tree;
trav→tbst node = tree→tbst root ;
if (trav→tbst node != NULL) {

while (trav→tbst node→tbst tag [0] == TBST_CHILD)
trav→tbst node = trav→tbst node→tbst link [0];

return trav→tbst node→tbst data;
}
else return NULL;

}
This code is included in §268.

Chapter 7: Threaded Binary Search Trees 175

7.8.3 Starting at the Last Node

§271 〈TBST traverser last initializer 271 〉 ≡
void ∗tbst t last (struct tbst traverser ∗trav , struct tbst table ∗tree) {

assert (tree != NULL && trav != NULL);

trav→tbst table = tree;
trav→tbst node = tree→tbst root ;
if (trav→tbst node != NULL) {

while (trav→tbst node→tbst tag [1] == TBST_CHILD)
trav→tbst node = trav→tbst node→tbst link [1];

return trav→tbst node→tbst data;
}
else return NULL;

}
This code is included in §268.

7.8.4 Starting at a Found Node

The code for this function is derived with few changes from 〈TBST search function 253 〉.
§272 〈TBST traverser search initializer 272 〉 ≡

void ∗tbst t find (struct tbst traverser ∗trav , struct tbst table ∗tree, void ∗item) {
struct tbst node ∗p;

assert (trav != NULL && tree != NULL && item != NULL);

trav→tbst table = tree;
trav→tbst node = NULL;

p = tree→tbst root ;
if (p == NULL)

return NULL;

for (;;) {
int cmp, dir ;

cmp = tree→tbst compare (item, p→tbst data, tree→tbst param);
if (cmp == 0) {

trav→tbst node = p;
return p→tbst data;

}
dir = cmp > 0;
if (p→tbst tag [dir] == TBST_CHILD)

p = p→tbst link [dir];
else return NULL;

}
}
This code is included in §268.

176 GNU libavl 2.0.1

7.8.5 Starting at an Inserted Node

This implementation is a trivial adaptation of 〈AVL traverser insertion initializer 179 〉.
In particular, management of generation numbers has been removed.

§273 〈TBST traverser insertion initializer 273 〉 ≡
void ∗tbst t insert (struct tbst traverser ∗trav , struct tbst table ∗tree, void ∗item) {

void ∗∗p;
assert (trav != NULL && tree != NULL && item != NULL);
p = tbst probe (tree, item);
if (p != NULL) {

trav→tbst table = tree;
trav→tbst node =

((struct tbst node ∗) ((char ∗) p − offsetof (struct tbst node, tbst data)));
return ∗p;

} else {
tbst t init (trav , tree);
return NULL;

}
}
This code is included in §268, §395, and §546.

7.8.6 Initialization by Copying

§274 〈TBST traverser copy initializer 274 〉 ≡
void ∗tbst t copy (struct tbst traverser ∗trav , const struct tbst traverser ∗src) {

assert (trav != NULL && src != NULL);
trav→tbst table = src→tbst table;
trav→tbst node = src→tbst node;
return trav→tbst node != NULL ? trav→tbst node→tbst data : NULL;

}
This code is included in §268, §395, §502, and §546.

7.8.7 Advancing to the Next Node

Despite the earlier discussion (see Section 7.8 [Traversing a TBST], page 173), there are
actually three cases, not two, in advancing within a threaded binary tree. The extra case
turns up when the current node is the null item. We deal with that case by calling out to
tbst t first().

Notice also that, below, in the case of following a thread we must check for a null node,
but not in the case of following a child pointer.

§275 〈TBST traverser advance function 275 〉 ≡
void ∗tbst t next (struct tbst traverser ∗trav) {

assert (trav != NULL);
if (trav→tbst node == NULL)

return tbst t first (trav , trav→tbst table);

Chapter 7: Threaded Binary Search Trees 177

else if (trav→tbst node→tbst tag [1] == TBST_THREAD) {
trav→tbst node = trav→tbst node→tbst link [1];
return trav→tbst node != NULL ? trav→tbst node→tbst data : NULL;

} else {
trav→tbst node = trav→tbst node→tbst link [1];
while (trav→tbst node→tbst tag [0] == TBST_CHILD)

trav→tbst node = trav→tbst node→tbst link [0];
return trav→tbst node→tbst data;

}
}
This code is included in §268.

See also: [Knuth 1997], algorithm 2.3.1S.

7.8.8 Backing Up to the Previous Node

§276 〈TBST traverser back up function 276 〉 ≡
void ∗tbst t prev (struct tbst traverser ∗trav) {

assert (trav != NULL);
if (trav→tbst node == NULL)

return tbst t last (trav , trav→tbst table);
else if (trav→tbst node→tbst tag [0] == TBST_THREAD) {

trav→tbst node = trav→tbst node→tbst link [0];
return trav→tbst node != NULL ? trav→tbst node→tbst data : NULL;

} else {
trav→tbst node = trav→tbst node→tbst link [0];
while (trav→tbst node→tbst tag [1] == TBST_CHILD)

trav→tbst node = trav→tbst node→tbst link [1];
return trav→tbst node→tbst data;

}
}
This code is included in §268.

7.9 Copying

We can use essentially the same algorithm to copy threaded BSTs as unthreaded (see
〈BST copy function 83 〉). Some modifications are necessary, of course. The most obvious
change is that the threads must be set up. This is not hard. We can do it the same way
that tbst probe() does.

Less obvious is the way to get rid of the stack. In bst copy(), the stack was used to keep
track of as yet incompletely processed parents of the current node. When we came back to
one of these nodes, we did the actual copy of the node data, then visited the node’s right
subtree, if non-empty.

In a threaded tree, we can replace the use of the stack by the use of threads. Instead of
popping an item off the stack when we can’t move down in the tree any further, we follow
the node’s right thread. This brings us up to an ancestor (parent, grandparent, . . .) of the
node, which we can then deal with in the same way as before.

178 GNU libavl 2.0.1

This diagram shows the threads that would be followed to find parents in copying a
couple of different threaded binary trees. Of course, the TBSTs would have complete sets
of threads, but only the ones that are followed are shown:

1

2

3

4

5

6

7
0

1

2

3

4

5

6

7

8

9

Why does following the right thread from a node bring us to one of the node’s ancestors?
Consider the algorithm for finding the successor of a node with no right child, described
earlier (see Section 4.9.3 [Better Iterative Traversal], page 53). This algorithm just moves
up the tree from a node to its parent, grandparent, etc., guaranteeing that the successor
will be a ancestor of the original node.

How do we know that following the right thread won’t take us too far up the tree and
skip copying some subtree? Because we only move up to the right one time using that same
algorithm. When we move up to the left, we’re going back to some binary tree whose right
subtree we’ve already dealt with (we are currently in the right subtree of that binary tree,
so of course we’ve dealt with it).

In conclusion, following the right thread always takes us to just the node whose right
subtree we want to copy next. Of course, if that node happens to have an empty right
subtree, then there is nothing to do, so we just continue along the next right thread, and
so on.

The first step is to build a function to copy a single node. The following function
copy node() does this, creating a new node as the child of an existing node:

§277 〈TBST node copy function 277 〉 ≡
/∗ Creates a new node as a child of dst on side dir .

Copies data from src into the new node, applying copy(), if non-null.
Returns nonzero only if fully successful.
Regardless of success, integrity of the tree structure is assured,
though failure may leave a null pointer in a tbst data member. ∗/

static int copy node (struct tbst table ∗tree, struct tbst node ∗dst , int dir ,
const struct tbst node ∗src, tbst copy func ∗copy) {

struct tbst node ∗new = tree→tbst alloc→libavl malloc (tree→tbst alloc, sizeof ∗new);
if (new == NULL)

return 0;
new→tbst link [dir] = dst→tbst link [dir];
new→tbst tag [dir] = TBST_THREAD;
new→tbst link [!dir] = dst ;
new→tbst tag [!dir] = TBST_THREAD;
dst→tbst link [dir] = new ;
dst→tbst tag [dir] = TBST_CHILD;
if (copy == NULL)

new→tbst data = src→tbst data;

Chapter 7: Threaded Binary Search Trees 179

else {
new→tbst data = copy (src→tbst data, tree→tbst param);
if (new→tbst data == NULL)

return 0;
}
return 1;

}
This code is included in §278.

Using the node copy function above, constructing the tree copy function is easy. In
fact, the code is considerably easier to read than our original function to iteratively copy
an unthreaded binary tree (see Section 4.10.3 [Handling Errors in Iterative BST Copying],
page 64), because this function is not as heavily optimized.

One tricky part is getting the copy started. We can’t use the dirty trick from bst copy()
of casting the address of a bst root to a node pointer, because we need access to the first
tag as well as the first link (see Exercise 2 for a way to sidestep this problem). So instead
we use a couple of “pseudo-root” nodes rp and rq , allocated locally.

§278 〈TBST copy function 278 〉 ≡
〈TBST node copy function 277 〉
〈TBST copy error helper function 280 〉
〈TBST main copy function 279 〉
This code is included in §251.

§279 〈TBST main copy function 279 〉 ≡
struct tbst table ∗tbst copy (const struct tbst table ∗org , tbst copy func ∗copy ,

tbst item func ∗destroy , struct libavl allocator ∗allocator) {
struct tbst table ∗new ;
const struct tbst node ∗p;
struct tbst node ∗q ;
struct tbst node rp, rq ;
assert (org != NULL);
new = tbst create (org→tbst compare, org→tbst param,

allocator != NULL ? allocator : org→tbst alloc);
if (new == NULL)

return NULL;
new→tbst count = org→tbst count ;
if (new→tbst count == 0)

return new ;
p = &rp;
rp.tbst link [0] = org→tbst root ;
rp.tbst tag [0] = TBST_CHILD;
q = &rq ;
rq .tbst link [0] = NULL;
rq .tbst tag [0] = TBST_THREAD;
for (;;) {

if (p→tbst tag [0] == TBST_CHILD) {

180 GNU libavl 2.0.1

if (!copy node (new , q , 0, p→tbst link [0], copy)) {
copy error recovery (rq .tbst link [0], new , destroy);
return NULL;

}
p = p→tbst link [0];
q = q→tbst link [0];

} else {
while (p→tbst tag [1] == TBST_THREAD) {

p = p→tbst link [1];
if (p == NULL) {

q→tbst link [1] = NULL;
new→tbst root = rq .tbst link [0];
return new ;

}
q = q→tbst link [1];

}
p = p→tbst link [1];
q = q→tbst link [1];

}
if (p→tbst tag [1] == TBST_CHILD)

if (!copy node (new , q , 1, p→tbst link [1], copy)) {
copy error recovery (rq .tbst link [0], new , destroy);
return NULL;

}
}

}
This code is included in §278 and §329.

A sensitive issue in the code above is treatment of the final thread. The initial call to
copy node() causes a right thread to point to rq , but it needs to be a null pointer. We need
to perform this kind of transformation:

1

2

3

4

5

rq

⇒
1

2

3

4

5

rq

When the copy is successful, this is just a matter of setting the final q ’s right child
pointer to NULL, but when it is unsuccessful we have to find the pointer in question, which
is in the greatest node in the tree so far (to see this, try constructing a few threaded BSTs
by hand on paper). Function copy error recovery() does this, as well as destroying the tree.
It also handles the case of failure when no nodes have yet been added to the tree:

§280 〈TBST copy error helper function 280 〉 ≡
static void copy error recovery (struct tbst node ∗p,

struct tbst table ∗new , tbst item func ∗destroy) {

Chapter 7: Threaded Binary Search Trees 181

new→tbst root = p;
if (p != NULL) {

while (p→tbst tag [1] == TBST_CHILD)
p = p→tbst link [1];

p→tbst link [1] = NULL;
}
tbst destroy (new , destroy);

}
This code is included in §278 and §329.

Exercises:

1. In the diagram above that shows examples of threads followed while copying a TBST,
all right threads in the TBSTs are shown. Explain how this is not just a coincidence.

2. Suggest some optimization possibilities for tbst copy().

7.10 Destruction

Destroying a threaded binary tree is easy. We can simply traverse the tree in inorder in
the usual way. We always have a way to get to the next node without having to go back
up to any of the nodes we’ve already destroyed. (We do, however, have to make sure to go
find the next node before destroying the current one, in order to avoid reading data from
freed memory.) Here’s all it takes:

§281 〈TBST destruction function 281 〉 ≡
void tbst destroy (struct tbst table ∗tree, tbst item func ∗destroy) {

struct tbst node ∗p; /∗ Current node. ∗/
struct tbst node ∗n; /∗ Next node. ∗/
p = tree→tbst root ;
if (p != NULL)

while (p→tbst tag [0] == TBST_CHILD)
p = p→tbst link [0];

while (p != NULL) {
n = p→tbst link [1];
if (p→tbst tag [1] == TBST_CHILD)

while (n→tbst tag [0] == TBST_CHILD)
n = n→tbst link [0];

if (destroy != NULL && p→tbst data != NULL)
destroy (p→tbst data, tree→tbst param);

tree→tbst alloc→libavl free (tree→tbst alloc, p);

p = n;
}
tree→tbst alloc→libavl free (tree→tbst alloc, tree);

}
This code is included in §251, §300, and §336.

182 GNU libavl 2.0.1

7.11 Balance

Just like their unthreaded cousins, threaded binary trees can become degenerate, leaving
their good performance characteristics behind. When this happened in a unthreaded BST,
stack overflow often made it necessary to rebalance the tree. This doesn’t happen in our
implementation of threaded BSTs, because none of the routines uses a stack. It is still
useful to have a rebalance routine for performance reasons, so we will implement one, in
this section, anyway.

There is no need to change the basic algorithm. As before, we convert the tree to a
linear “vine”, then the vine to a balanced binary search tree. See Section 4.12 [Balancing a
BST], page 70, for a review of the balancing algorithm.

Here is the outline and prototype for tbst balance().
§282 〈TBST balance function 282 〉 ≡

〈TBST tree-to-vine function 284 〉
〈TBST vine compression function 286 〉
〈TBST vine-to-tree function 285 〉
〈TBST main balance function 283 〉
This code is included in §251.

§283 〈TBST main balance function 283 〉 ≡
/∗ Balances tree. ∗/
void tbst balance (struct tbst table ∗tree) {

assert (tree != NULL);
tree to vine (tree);
vine to tree (tree);

}
This code is included in §282 and §408.

7.11.1 From Tree to Vine

We could transform a threaded binary tree into a vine in the same way we did for
unthreaded binary trees, by use of rotations (see Section 4.12.1 [Transforming a BST into
a Vine], page 72). But one of the reasons we did it that way was to avoid use of a stack,
which is no longer a problem. It’s now simpler to rearrange nodes by inorder traversal.

We start by finding the minimum node in the tree as p, which will step through the tree
in inorder. During each trip through the main loop, we find p’s successor as q and make p
the left child of q . We also have to make sure that p’s right thread points to q . That’s all
there is to it.

§284 〈TBST tree-to-vine function 284 〉 ≡
static void tree to vine (struct tbst table ∗tree) {

struct tbst node ∗p;
if (tree→tbst root == NULL)

return;
p = tree→tbst root ;
while (p→tbst tag [0] == TBST_CHILD)

p = p→tbst link [0];

Chapter 7: Threaded Binary Search Trees 183

for (;;) {
struct tbst node ∗q = p→tbst link [1];
if (p→tbst tag [1] == TBST_CHILD) {

while (q→tbst tag [0] == TBST_CHILD)
q = q→tbst link [0];

p→tbst tag [1] = TBST_THREAD;
p→tbst link [1] = q ;

}
if (q == NULL)

break;
q→tbst tag [0] = TBST_CHILD;
q→tbst link [0] = p;
p = q ;

}
tree→tbst root = p;

}
This code is included in §282.

Sometimes one trip through the main loop above will put the TBST into an inconsistent
state, where two different nodes are the parent of a third node. Such an inconsistency is
always corrected in the next trip through the loop. An example is warranted. Suppose the
original threaded binary tree looks like this, with nodes p and q for the initial iteration of
the loop as marked:

1p

2 q

3

The first trip through the loop makes p, 1, the child of q , 2, but p’s former parent’s left
child pointer still points to p. We now have a situation where node 1 has two parents: both
2 and 3. This diagram tries to show the situation by omitting the line that would otherwise
lead down from 3 to 2:

1p

2q

3

On the other hand, node 2’s right thread still points to 3, so on the next trip through the
loop there is no trouble finding the new p’s successor. Node 3 is made the parent of 2 and
all is well. This diagram shows the new p and q , then the fixed-up vine. The only difference
is that node 3 now, correctly, has 2 as its left child:

1

2p

3q

⇒
1

2p

3q

184 GNU libavl 2.0.1

7.11.2 From Vine to Balanced Tree

Transforming a vine into a balanced threaded BST is similar to the same operation on an
unthreaded BST. We can use the same algorithm, adjusting it for presence of the threads.
The following outline is similar to 〈BST balance function 87 〉. In fact, we entirely reuse
〈Calculate leaves 91 〉, just changing bst to tbst . We omit the final check on the tree’s height,
because none of the TBST functions are height-limited.

§285 〈TBST vine-to-tree function 285 〉 ≡
static void vine to tree (struct tbst table ∗tree) {

unsigned long vine; /∗ Number of nodes in main vine. ∗/
unsigned long leaves; /∗ Nodes in incomplete bottom level, if any. ∗/
int height ; /∗ Height of produced balanced tree. ∗/
〈Calculate leaves; bst ⇒ tbst 91 〉
〈Reduce TBST vine general case to special case 287 〉
〈Make special case TBST vine into balanced tree and count height 288 〉

}
This code is included in §282 and §408.

Not many changes are needed to adapt the algorithm to handle threads. Consider the
basic right rotation transformation used during a compression:

a

B

b

R

c ⇒ a

B

b

R

c

The rotation does not disturb a or c, so the only node that can cause trouble is b. If b
is a real child node, then there’s no need to do anything differently. But if b is a thread,
then we have to swap around the direction of the thread, like this:

a

B

R

c ⇒ a

B

R

c

After a rotation that involves a thread, the next rotation on B will not involve a thread.
So after we perform a rotation that adjusts a thread in one place, the next one in the same
place will not require a thread adjustment.

Every node in the vine we start with has a thread as its right link. This means that
during the first pass along the main vine we must perform thread adjustments at every
node, but subsequent passes along the vine must not perform any adjustments.

This simple idea is complicated by the initial partial compression pass in trees that do
not have exactly one fewer than a power of two nodes. After a partial compression pass,
the nodes at the top of the main vine no longer have right threads, but the ones farther
down still do.

We deal with this complication by defining the compress() function so it can handle
a mixture of rotations with and without right threads. The rotations that need thread

Chapter 7: Threaded Binary Search Trees 185

adjustments will always be below the ones that do not, so this function simply takes a
pair of parameters, the first specifying how many rotations without thread adjustment
to perform, the next how many with thread adjustment. Compare this code to that for
unthreaded BSTs:

§286 〈TBST vine compression function 286 〉 ≡
/∗ Performs a nonthreaded compression operation nonthread times,

then a threaded compression operation thread times, starting at root . ∗/
static void compress (struct tbst node ∗root ,

unsigned long nonthread , unsigned long thread) {
assert (root != NULL);
while (nonthread−−) {

struct tbst node ∗red = root→tbst link [0];
struct tbst node ∗black = red→tbst link [0];
root→tbst link [0] = black ;
red→tbst link [0] = black→tbst link [1];
black→tbst link [1] = red ;
root = black ;

}
while (thread−−) {

struct tbst node ∗red = root→tbst link [0];
struct tbst node ∗black = red→tbst link [0];
root→tbst link [0] = black ;
red→tbst link [0] = black ;
red→tbst tag [0] = TBST_THREAD;
black→tbst tag [1] = TBST_CHILD;
root = black ;

}
}
This code is included in §282.

When we reduce the general case to the 2n − 1 special case, all of the rotations adjust
threads:

§287 〈Reduce TBST vine general case to special case 287 〉 ≡
compress ((struct tbst node ∗) &tree→tbst root , 0, leaves);

This code is included in §285.

We deal with the first compression specially, in order to clean up any remaining unad-
justed threads:

§288 〈Make special case TBST vine into balanced tree and count height 288 〉 ≡
vine = tree→tbst count − leaves;
height = 1 + (leaves > 0);
if (vine > 1) {

unsigned long nonleaves = vine / 2;
leaves /= 2;
if (leaves > nonleaves) {

leaves = nonleaves;

186 GNU libavl 2.0.1

nonleaves = 0;
}
else nonleaves −= leaves;
compress ((struct tbst node ∗) &tree→tbst root , leaves, nonleaves);
vine /= 2;
height++;

}
See also §289.

This code is included in §285.

After this, all the remaining compressions use only rotations without thread adjustment,
and we’re done:

§289 〈Make special case TBST vine into balanced tree and count height 288 〉 +≡
while (vine > 1) {

compress ((struct tbst node ∗) &tree→tbst root , vine / 2, 0);
vine /= 2;
height++;

}

7.12 Testing

There’s little new in the testing code. We do add an test for tbst balance(), because
none of the existing tests exercise it. This test doesn’t check that tbst balance() actually
balances the tree, it just verifies that afterwards the tree contains the items it should, so to
be certain that balancing is correct, turn up the verbosity and look at the trees printed.

Function print tree structure() prints thread node numbers preceded by ‘>’, with null
threads indicated by ‘>>’. This notation is compatible with the plain text output format of
the texitree program used to draw the binary trees in this book. (It will cause errors for
PostScript output because it omits node names.)

§290 〈 tbst-test.c 290 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “tbst.h”
#include “test.h”
〈TBST print function 291 〉
〈BST traverser check function; bst ⇒ tbst 104 〉
〈Compare two TBSTs for structure and content 292 〉
〈Recursively verify TBST structure 293 〉
〈TBST verify function 294 〉
〈TBST test function 295 〉
〈BST overflow test function; bst ⇒ tbst 122 〉

§291 〈TBST print function 291 〉 ≡
void print tree structure (struct tbst node ∗node, int level) {

int i ;

Chapter 7: Threaded Binary Search Trees 187

if (level > 16) {
printf ("[...]");
return;

}
if (node == NULL) {

printf ("<nil>");
return;

}
printf ("%d(", node→tbst data ? ∗(int ∗) node→tbst data : −1);
for (i = 0; i <= 1; i++) {

if (node→tbst tag [i] == TBST_CHILD) {
if (node→tbst link [i] == node) printf ("loop");
else print tree structure (node→tbst link [i], level + 1);

}
else if (node→tbst link [i] != NULL)

printf (">%d", (node→tbst link [i]→tbst data
? ∗(int ∗) node→tbst link [i]→tbst data : −1));

else printf (">>");
if (i == 0) fputs (",Ã", stdout);

}
putchar (’)’);

}
void print whole tree (const struct tbst table ∗tree, const char ∗title) {

printf ("%s:Ã", title);
print tree structure (tree→tbst root , 0);
putchar (’\n’);

}
This code is included in §290, §330, and §368.

§292 〈Compare two TBSTs for structure and content 292 〉 ≡
static int compare trees (struct tbst node ∗a, struct tbst node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

if (a != NULL || b != NULL) {
printf ("Ãa=%dÃb=%d\n",

a ? ∗(int ∗) a→tbst data : −1, b ? ∗(int ∗) b→tbst data : −1);
assert (0);

}
return 1;

}
assert (a != b);
if (∗(int ∗) a→tbst data != ∗(int ∗) b→tbst data
|| a→tbst tag [0] != b→tbst tag [0] || a→tbst tag [1] != b→tbst tag [1]) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%dÃb=%dÃa:",

∗(int ∗) a→tbst data, ∗(int ∗) b→tbst data);
if (a→tbst tag [0] == TBST_CHILD) printf ("l");

188 GNU libavl 2.0.1

if (a→tbst tag [1] == TBST_CHILD) printf ("r");
printf ("Ãb:");
if (b→tbst tag [0] == TBST_CHILD) printf ("l");
if (b→tbst tag [1] == TBST_CHILD) printf ("r");
printf ("\n");
return 0;

}
if (a→tbst tag [0] == TBST_THREAD)

assert ((a→tbst link [0] == NULL) != (a→tbst link [0] != b→tbst link [0]));
if (a→tbst tag [1] == TBST_THREAD)

assert ((a→tbst link [1] == NULL) != (a→tbst link [1] != b→tbst link [1]));
okay = 1;
if (a→tbst tag [0] == TBST_CHILD)

okay &= compare trees (a→tbst link [0], b→tbst link [0]);
if (a→tbst tag [1] == TBST_CHILD)

okay &= compare trees (a→tbst link [1], b→tbst link [1]);
return okay ;

}
This code is included in §290.

§293 〈Recursively verify TBST structure 293 〉 ≡
static void recurse verify tree (struct tbst node ∗node, int ∗okay , size t ∗count ,

int min, int max) {
int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
if (node == NULL) {

∗count = 0;
return;

}
d = ∗(int ∗) node→tbst data;
〈Verify binary search tree ordering 114 〉
subcount [0] = subcount [1] = 0;
if (node→tbst tag [0] == TBST_CHILD)

recurse verify tree (node→tbst link [0], okay , &subcount [0], min, d − 1);
if (node→tbst tag [1] == TBST_CHILD)

recurse verify tree (node→tbst link [1], okay , &subcount [1], d + 1, max);
∗count = 1 + subcount [0] + subcount [1];

}
This code is included in §290.

§294 〈TBST verify function 294 〉 ≡
static int verify tree (struct tbst table ∗tree, int array [], size t n) {

int okay = 1;
〈Check tree→bst count is correct; bst ⇒ tbst 110 〉
if (okay) { 〈Check BST structure; bst ⇒ tbst 111 〉 }
if (okay) { 〈Check that the tree contains all the elements it should; bst ⇒ tbst 115 〉 }

Chapter 7: Threaded Binary Search Trees 189

if (okay) { 〈Check that forward traversal works; bst ⇒ tbst 116 〉 }
if (okay) { 〈Check that backward traversal works; bst ⇒ tbst 117 〉 }
if (okay) { 〈Check that traversal from the null element works; bst ⇒ tbst 118 〉 }
return okay ;

}
This code is included in §290.

§295 〈TBST test function 295 〉 ≡
int test correctness (struct libavl allocator ∗allocator ,

int insert [], int delete[], int n, int verbosity) {
struct tbst table ∗tree;
int okay = 1;
int i ;
〈Test creating a BST and inserting into it; bst ⇒ tbst 102 〉
〈Test BST traversal during modifications; bst ⇒ tbst 103 〉
〈Test deleting nodes from the BST and making copies of it; bst ⇒ tbst 105 〉
〈Test destroying the tree; bst ⇒ tbst 108 〉
〈Test TBST balancing 296 〉
return okay ;

}
This code is included in §290, §411, and §515.

§296 〈Test TBST balancing 296 〉 ≡
/∗ Test tbst balance(). ∗/
if (verbosity >= 2) printf ("ÃÃTestingÃbalancing...\n");
tree = tbst create (compare ints, NULL, allocator);
if (tree == NULL) {

if (verbosity >= 0) printf ("ÃÃOutÃofÃmemoryÃcreatingÃtree.\n");
return 1;

}
for (i = 0; i < n; i++) {

void ∗∗p = tbst probe (tree, &insert [i]);
if (p == NULL) {

if (verbosity >= 0) printf ("ÃÃÃÃOutÃofÃmemoryÃinÃinsertion.\n");
tbst destroy (tree, NULL);
return 1;

}
if (∗p != &insert [i]) printf ("ÃÃÃÃDuplicateÃitemÃinÃtree!\n");

}
if (verbosity >= 4) print whole tree (tree, "ÃÃÃÃPre-balance");
tbst balance (tree);
if (verbosity >= 4) print whole tree (tree, "ÃÃÃÃPost-balance");
if (!verify tree (tree, insert , n))

return 0;
tbst destroy (tree, NULL);
This code is included in §295.

190 GNU libavl 2.0.1

Chapter 8: Threaded AVL Trees 191

8 Threaded AVL Trees

The previous chapter introduced a new concept in BSTs, the idea of threads. Threads
allowed us to simplify traversals and eliminate the use of stacks. On the other hand, threaded
trees can still grow tall enough that they reduce the program’s performance unacceptably,
the problem that balanced trees were meant to solve. Ideally, we’d like to add threads to
balanced trees, to produce threaded balanced trees that combine the best of both worlds.

We can do this, and it’s not even very difficult. This chapter will show how to add
threads to AVL trees. The next will show how to add them to red-black trees.

Here’s an outline of the table implementation for threaded AVL or “TAVL” trees that
we’ll develop in this chapter. Note the usage of prefix tavl for these functions.

§297 〈 tavl.h 297 〉 ≡
〈License 1 〉
#ifndef TAVL_H
#define TAVL_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ tavl 14 〉
〈BST maximum height; bst ⇒ tavl 28 〉
〈TBST table structure; tbst ⇒ tavl 250 〉
〈TAVL node structure 299 〉
〈TBST traverser structure; tbst ⇒ tavl 267 〉
〈Table function prototypes; tbl ⇒ tavl 15 〉
#endif /∗ tavl.h ∗/

§298 〈 tavl.c 298 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “tavl.h”
〈TAVL functions 300 〉

8.1 Data Types

The TAVL node structure takes the basic fields for a BST and adds a balance factor for
AVL balancing and a pair of tag fields to allow for threading.

§299 〈TAVL node structure 299 〉 ≡
/∗ Characterizes a link as a child pointer or a thread. ∗/
enum tavl tag {

TAVL_CHILD, /∗ Child pointer. ∗/
TAVL_THREAD /∗ Thread. ∗/

};
/∗ An TAVL tree node. ∗/
struct tavl node {

struct tavl node ∗tavl link [2]; /∗ Subtrees. ∗/

192 GNU libavl 2.0.1

void ∗tavl data; /∗ Pointer to data. ∗/
unsigned char tavl tag [2]; /∗ Tag fields. ∗/
signed char tavl balance; /∗ Balance factor. ∗/

};
This code is included in §297.

Exercises:

1. struct avl node contains three pointer members and a single character member, whereas
struct tavl node additionally contains an array of two characters. Is struct tavl node nec-
essarily larger than struct avl node?

8.2 Rotations

Rotations are just as useful in threaded BSTs as they are in unthreaded ones. We do
need to re-examine the idea, though, to see how the presence of threads affect rotations.

A generic rotation looks like this diagram taken from Section 4.3 [BST Rotations],
page 33:

a

X

b

Y

c ⇔ a

X

b

Y

c

Any of the subtrees labeled a, b, and c may be in fact threads. In the most extreme
case, all of them are threads, and the rotation looks like this:

X

Y
⇔

X

Y

As you can see, the thread from X to Y , represented by subtree b, reverses direction
and becomes a thread from Y to X following a right rotation. This has to be handled as a
special case in code for rotation. See Exercise 1 for details.

On the other hand, there is no need to do anything special with threads originating in
subtrees of a rotated node. This is a direct consequence of the locality and order-preserving
properties of a rotation (see Section 4.3 [BST Rotations], page 33). Here’s an example
diagram to demonstrate. Note in particular that the threads from A, B , and C point to
the same nodes in both trees:

A

X

B

Y

C ⇔ A

X

B

Y

C

Exercises:

1. Write functions for right and left rotations in threaded BSTs, analogous to those for
unthreaded BSTs developed in Exercise 4.3-2.

Chapter 8: Threaded AVL Trees 193

8.3 Operations

Now we’ll implement all the usual operations for TAVL trees. We can reuse everything
from TBSTs except insertion, deletion, and copy functions. Most of the copy function code
will in fact be reused also. Here’s the outline:

§300 〈TAVL functions 300 〉 ≡
〈TBST creation function; tbst ⇒ tavl 252 〉
〈TBST search function; tbst ⇒ tavl 253 〉
〈TAVL item insertion function 301 〉
〈Table insertion convenience functions; tbl ⇒ tavl 592 〉
〈TAVL item deletion function 311 〉
〈TBST traversal functions; tbst ⇒ tavl 268 〉
〈TAVL copy function 329 〉
〈TBST destruction function; tbst ⇒ tavl 281 〉
〈Default memory allocation functions; tbl ⇒ tavl 6 〉
〈Table assertion functions; tbl ⇒ tavl 594 〉
This code is included in §298.

8.4 Insertion

Insertion into an AVL tree is not complicated much by the need to update threads. The
outline is the same as before, and the code for step 3 and the local variable declarations
can be reused entirely:

§301 〈TAVL item insertion function 301 〉 ≡
void ∗∗tavl probe (struct tavl table ∗tree, void ∗item) {

〈 avl probe() local variables; avl ⇒ tavl 147 〉
assert (tree != NULL && item != NULL);
〈Step 1: Search TAVL tree for insertion point 302 〉
〈Step 2: Insert TAVL node 303 〉
〈Step 3: Update balance factors after AVL insertion; avl ⇒ tavl 150 〉
〈Step 4: Rebalance after TAVL insertion 304 〉

}
This code is included in §300.

8.4.1 Steps 1 and 2: Search and Insert

The first step is a lot like the unthreaded AVL version in 〈Step 1: Search AVL tree for
insertion point 148 〉. There is an unfortunate special case for an empty tree, because a null
pointer for tavl root indicates an empty tree but in a nonempty tree we must seek a thread
link. After we’re done, p, not q as before, is the node below which a new node should be
inserted, because the test for stepping outside the binary tree now comes before advancing
p.

§302 〈Step 1: Search TAVL tree for insertion point 302 〉 ≡
z = (struct tavl node ∗) &tree→tavl root ;
y = tree→tavl root ;
if (y != NULL) {

194 GNU libavl 2.0.1

for (q = z , p = y ; ; q = p, p = p→tavl link [dir]) {
int cmp = tree→tavl compare (item, p→tavl data, tree→tavl param);
if (cmp == 0)

return &p→tavl data;
if (p→tavl balance != 0)

z = q , y = p, k = 0;
da[k++] = dir = cmp > 0;
if (p→tavl tag [dir] == TAVL_THREAD)

break;
}

} else {
p = z ;
dir = 0;

}
This code is included in §301.

The insertion adds to the TBST code by setting the balance factor of the new node and
handling the first insertion into an empty tree as a special case:

§303 〈Step 2: Insert TAVL node 303 〉 ≡
〈Step 2: Insert TBST node; tbst ⇒ tavl 256 〉
n→tavl balance = 0;
if (tree→tavl root == n)

return &n→tavl data;
This code is included in §301.

8.4.2 Step 4: Rebalance

Now we’re finally to the interesting part, the rebalancing step. We can tell whether
rebalancing is necessary based on the balance factor of y , the same as in unthreaded AVL
insertion:

§304 〈Step 4: Rebalance after TAVL insertion 304 〉 ≡
if (y→tavl balance == −2)

{ 〈Rebalance TAVL tree after insertion in left subtree 305 〉 }
else if (y→tavl balance == +2)

{ 〈Rebalance TAVL tree after insertion in right subtree 308 〉 }
else return &n→tavl data;
z→tavl link [y != z→tavl link [0]] = w ;
return &n→tavl data;
This code is included in §301.

We will examine the case of insertion in the left subtree of y , the node at which we must
rebalance. We take x as y ’s child on the side of the new node, then, as for unthreaded AVL
insertion, we distinguish two cases based on the balance factor of x :

§305 〈Rebalance TAVL tree after insertion in left subtree 305 〉 ≡
struct tavl node ∗x = y→tavl link [0];
if (x→tavl balance == −1)

{ 〈Rebalance for − balance factor in TAVL insertion in left subtree 306 〉 }

Chapter 8: Threaded AVL Trees 195

else { 〈Rebalance for + balance factor in TAVL insertion in left subtree 307 〉 }
This code is included in §304.

Case 1: x has − balance factor

As for unthreaded insertion, we rotate right at y (see Section 5.4.4 [Rebalancing AVL
Trees], page 115). Notice the resemblance of the following code to rotate right() in the
solution to Exercise 8.2-1.

§306 〈Rebalance for − balance factor in TAVL insertion in left subtree 306 〉 ≡
w = x ;
if (x→tavl tag [1] == TAVL_THREAD) {

x→tavl tag [1] = TAVL_CHILD;
y→tavl tag [0] = TAVL_THREAD;
y→tavl link [0] = x ;

}
else y→tavl link [0] = x→tavl link [1];
x→tavl link [1] = y ;
x→tavl balance = y→tavl balance = 0;

This code is included in §305.

Case 2: x has + balance factor

When x has a + balance factor, we perform the transformation shown below, which con-
sists of a left rotation at x followed by a right rotation at y . This is the same transformation
used in unthreaded insertion:

a

+x

b

w

c

--y

d ⇒

a

x

b

0 w

c

y

d

We could simply apply the standard code from Exercise 8.2-1 in each rotation (see
Exercise 1), but it is just as straightforward to do both of the rotations together, then clean
up any threads. Subtrees a and d cannot cause thread-related trouble, because they are
not disturbed during the transformation: a remains x ’s left child and d remains y ’s right
child. The children of w , subtrees b and c, do require handling. If subtree b is a thread,
then after the rotation and before fix-up x ’s right link points to itself, and, similarly, if c is
a thread then y ’s left link points to itself. These links must be changed into threads to w
instead, and w ’s links must be tagged as child pointers.

If both b and c are threads then the transformation looks like the diagram below, showing
pre-rebalancing and post-rebalancing, post-fix-up views. The AVL balance rule implies that
if b and c are threads then a and d are also:

196 GNU libavl 2.0.1

+ x

 w

--y

⇒
x

w0

 y

The required code is heavily based on the corresponding code for unthreaded AVL re-
balancing:

§307 〈Rebalance for + balance factor in TAVL insertion in left subtree 307 〉 ≡
〈Rotate left at x then right at y in AVL tree; avl ⇒ tavl 156 〉
if (w→tavl tag [0] == TAVL_THREAD) {

x→tavl tag [1] = TAVL_THREAD;
x→tavl link [1] = w ;
w→tavl tag [0] = TAVL_CHILD;

}
if (w→tavl tag [1] == TAVL_THREAD) {

y→tavl tag [0] = TAVL_THREAD;
y→tavl link [0] = w ;
w→tavl tag [1] = TAVL_CHILD;

}
This code is included in §305, §324, and §667.

Exercises:

1. Rewrite 〈Rebalance for + balance factor in TAVL insertion in left subtree 307 〉 in terms
of the routines from Exercise 8.2-1.

8.4.3 Symmetric Case

Here is the corresponding code for the case where insertion occurs in the right subtree
of y .

§308 〈Rebalance TAVL tree after insertion in right subtree 308 〉 ≡
struct tavl node ∗x = y→tavl link [1];
if (x→tavl balance == +1)

{ 〈Rebalance for + balance factor in TAVL insertion in right subtree 309 〉 }
else { 〈Rebalance for − balance factor in TAVL insertion in right subtree 310 〉 }
This code is included in §304.

§309 〈Rebalance for + balance factor in TAVL insertion in right subtree 309 〉 ≡
w = x ;
if (x→tavl tag [0] == TAVL_THREAD) {

x→tavl tag [0] = TAVL_CHILD;
y→tavl tag [1] = TAVL_THREAD;
y→tavl link [1] = x ;

}
else y→tavl link [1] = x→tavl link [0];
x→tavl link [0] = y ;
x→tavl balance = y→tavl balance = 0;
This code is included in §308.

§310 〈Rebalance for − balance factor in TAVL insertion in right subtree 310 〉 ≡

Chapter 8: Threaded AVL Trees 197

〈Rotate right at x then left at y in AVL tree; avl ⇒ tavl 159 〉
if (w→tavl tag [0] == TAVL_THREAD) {

y→tavl tag [1] = TAVL_THREAD;
y→tavl link [1] = w ;
w→tavl tag [0] = TAVL_CHILD;

}
if (w→tavl tag [1] == TAVL_THREAD) {

x→tavl tag [0] = TAVL_THREAD;
x→tavl link [0] = w ;
w→tavl tag [1] = TAVL_CHILD;

}
This code is included in §308, §320, and §666.

8.5 Deletion

Deletion from a TAVL tree can be accomplished by combining our knowledge about AVL
trees and threaded trees. From one perspective, we add rebalancing to TBST deletion. From
the other perspective, we add thread handling to AVL tree deletion.

The function outline is about the same as usual. We do add a helper function for finding
the parent of a TAVL node:

§311 〈TAVL item deletion function 311 〉 ≡
〈Find parent of a TBST node; tbst ⇒ tavl 327 〉
void ∗tavl delete (struct tavl table ∗tree, const void ∗item) {

struct tavl node ∗p; /∗ Traverses tree to find node to delete. ∗/
struct tavl node ∗q ; /∗ Parent of p. ∗/
int dir ; /∗ Index into q→tavl link [] to get p. ∗/
int cmp; /∗ Result of comparison between item and p. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search TAVL tree for item to delete 312 〉
〈Step 2: Delete item from TAVL tree 313 〉
〈Steps 3 and 4: Update balance factors and rebalance after TAVL deletion 318 〉

}
This code is included in §300.

8.5.1 Step 1: Search

We use p to search down the tree and keep track of p’s parent with q . We keep the
invariant at the beginning of the loop here that q→tavl link [dir] == p. As the final step,
we record the item deleted and update the tree’s item count.

§312 〈Step 1: Search TAVL tree for item to delete 312 〉 ≡
if (tree→tavl root == NULL)

return NULL;
p = (struct tavl node ∗) &tree→tavl root ;
for (cmp = −1; cmp != 0;

cmp = tree→tavl compare (item, p→tavl data, tree→tavl param)) {

198 GNU libavl 2.0.1

dir = cmp > 0;
q = p;
if (p→tavl tag [dir] == TAVL_THREAD)

return NULL;
p = p→tavl link [dir];

}
item = p→tavl data;
This code is included in §311 and §670.

8.5.2 Step 2: Delete

The cases for deletion are the same as for a TBST (see Section 7.7 [Deleting from a
TBST], page 168). The difference is that we have to copy around balance factors and keep
track of where balancing needs to start. After the deletion, q is the node at which balance
factors must be updated and possible rebalancing occurs and dir is the side of q from which
the node was deleted. For cases 1 and 2, q need not change from its current value as the
parent of the deleted node. For cases 3 and 4, q will need to be changed.

§313 〈Step 2: Delete item from TAVL tree 313 〉 ≡
if (p→tavl tag [1] == TAVL_THREAD) {

if (p→tavl tag [0] == TAVL_CHILD)
{ 〈Case 1 in TAVL deletion 314 〉 }

else { 〈Case 2 in TAVL deletion 315 〉 }
} else {

struct tavl node ∗r = p→tavl link [1];
if (r→tavl tag [0] == TAVL_THREAD)

{ 〈Case 3 in TAVL deletion 316 〉 }
else { 〈Case 4 in TAVL deletion 317 〉 }

}
tree→tavl alloc→libavl free (tree→tavl alloc, p);
This code is included in §311.

Case 1: p has a right thread and a left child

If p has a right thread and a left child, then we replace it by its left child. Rebalancing
must begin right above p, which is already set as q . There’s no need to change the TBST
code:

§314 〈Case 1 in TAVL deletion 314 〉 ≡
〈Case 1 in TBST deletion; tbst ⇒ tavl 260 〉
This code is included in §313.

Case 2: p has a right thread and a left thread

If p is a leaf, then we change q ’s pointer to p into a thread. Again, rebalancing must
begin at the node that’s already set up as q and there’s no need to change the TBST code:

§315 〈Case 2 in TAVL deletion 315 〉 ≡
〈Case 2 in TBST deletion; tbst ⇒ tavl 261 〉
This code is included in §313.

Chapter 8: Threaded AVL Trees 199

Case 3: p’s right child has a left thread

If p has a right child r , which in turn has no left child, then we move r in place of p.
In this case r , having replaced p, acquires p’s former balance factor and rebalancing must
start from there. The deletion in this case is always on the right side of the node.

§316 〈Case 3 in TAVL deletion 316 〉 ≡
〈Case 3 in TBST deletion; tbst ⇒ tavl 262 〉
r→tavl balance = p→tavl balance;
q = r ;
dir = 1;
This code is included in §313.

Case 4: p’s right child has a left child

The most general case comes up when p’s right child has a left child, where we replace p
by its successor s. In that case s acquires p’s former balance factor and rebalancing begins
from s’s parent r . Node s is always the left child of r .

§317 〈Case 4 in TAVL deletion 317 〉 ≡
〈Case 4 in TBST deletion; tbst ⇒ tavl 263 〉
s→tavl balance = p→tavl balance;
q = r ;
dir = 0;
This code is included in §313.

Exercises:

1. Rewrite 〈Case 4 in TAVL deletion 317 〉 to replace the deleted node’s tavl data by its
successor, then delete the successor, instead of shuffling pointers. (Refer back to Exercise
4.8-3 for an explanation of why this approach cannot be used in Libavl.)

8.5.3 Step 3: Update Balance Factors

Rebalancing begins from node q , from whose side dir a node was deleted. Node q at
the beginning of the iteration becomes node y , the root of the balance factor update and
rebalancing, and dir at the beginning of the iteration is used to separate the left-side and
right-side deletion cases.

The loop also updates the values of q and dir for rebalancing and for use in the next
iteration of the loop, if any. These new values can only be assigned after the old ones are
no longer needed, but must be assigned before any rebalancing so that the parent link to y
can be changed. For q this is after y receives q ’s old value and before rebalancing. For dir ,
it is after the branch point that separates the left-side and right-side deletion cases, so the
dir assignment is duplicated in each branch. The code used to update q is discussed later.

§318 〈Steps 3 and 4: Update balance factors and rebalance after TAVL deletion 318 〉 ≡
while (q != (struct tavl node ∗) &tree→tavl root) {

struct tavl node ∗y = q ;
q = find parent (tree, y);
if (dir == 0) {

200 GNU libavl 2.0.1

dir = q→tavl link [0] != y ;
y→tavl balance++;
if (y→tavl balance == +1)

break;
else if (y→tavl balance == +2)

{ 〈 Step 4: Rebalance after TAVL deletion 319 〉 }
}
else { 〈 Steps 3 and 4: Symmetric case in TAVL deletion 323 〉 }

}
tree→tavl count−−;
return (void ∗) item;

This code is included in §311.

8.5.4 Step 4: Rebalance

Rebalancing after deletion in a TAVL tree divides into three cases. The first of these is
analogous to case 1 in unthreaded AVL deletion, the other two to case 2 (see Section 7.6
[Inserting into a TBST], page 167). The cases are distinguished, as usual, based on the
balance factor of right child x of the node y at which rebalancing occurs:

§319 〈Step 4: Rebalance after TAVL deletion 319 〉 ≡
struct tavl node ∗x = y→tavl link [1];

assert (x != NULL);
if (x→tavl balance == −1) {

〈Rebalance for − balance factor after TAVL deletion in left subtree 320 〉
} else {

q→tavl link [dir] = x ;

if (x→tavl balance == 0) {
〈Rebalance for 0 balance factor after TAVL deletion in left subtree 321 〉
break;

} else /∗ x→tavl balance == +1 ∗/ {
〈Rebalance for + balance factor after TAVL deletion in left subtree 322 〉

}
}
This code is included in §318.

Case 1: x has − balance factor

This case is just like case 2 in TAVL insertion. In fact, we can even reuse the code:

§320 〈Rebalance for − balance factor after TAVL deletion in left subtree 320 〉 ≡
struct tavl node ∗w ;

〈Rebalance for − balance factor in TAVL insertion in right subtree 310 〉
q→tavl link [dir] = w ;

This code is included in §319.

Chapter 8: Threaded AVL Trees 201

Case 2: x has 0 balance factor

If x has a 0 balance factor, then we perform a left rotation at y . The transformation
looks like this, with subtree heights listed under their labels:

a
h-1

++ s

b
h

0 r

c
h

⇒

a
h-1

+s

b
h

-r

c
h

Subtree b is taller than subtree a, so even if h takes its minimum value of 1, then subtree
b has height h ≡ 1 and, therefore, it must contain at least one node and there is no need
to do any checking for threads. The code is simple:

§321 〈Rebalance for 0 balance factor after TAVL deletion in left subtree 321 〉 ≡
y→tavl link [1] = x→tavl link [0];
x→tavl link [0] = y ;
x→tavl balance = −1;
y→tavl balance = +1;

This code is included in §319 and §443.

Case 3: x has + balance factor

If x has a + balance factor, we perform a left rotation at y , same as for case 2, and the
transformation looks like this:

a
h-1

++ s

b
h-1

+ r

c
h

⇒

a
h-1

0r

b
h-1

0s

c
h

One difference from case 2 is in the resulting balance factors. The other is that if h ≡ 1,
then subtrees a and b have height h − 1 ≡ 0, so a and b may actually be threads. In that
case, the transformation must be done this way:

++ s

+ r

0 c

⇒
0s

0 r

0 c

This code handles both possibilities:
§322 〈Rebalance for + balance factor after TAVL deletion in left subtree 322 〉 ≡

if (x→tavl tag [0] == TAVL_CHILD)
y→tavl link [1] = x→tavl link [0];

else {

202 GNU libavl 2.0.1

y→tavl tag [1] = TAVL_THREAD;
x→tavl tag [0] = TAVL_CHILD;

}
x→tavl link [0] = y ;
y→tavl balance = x→tavl balance = 0;
This code is included in §319.

8.5.5 Symmetric Case

Here’s the code for the symmetric case.
§323 〈Steps 3 and 4: Symmetric case in TAVL deletion 323 〉 ≡

dir = q→tavl link [0] != y ;
y→tavl balance−−;
if (y→tavl balance == −1) break;
else if (y→tavl balance == −2) {

struct tavl node ∗x = y→tavl link [0];
assert (x != NULL);
if (x→tavl balance == +1) {

〈Rebalance for + balance factor after TAVL deletion in right subtree 324 〉
} else {

q→tavl link [dir] = x ;
if (x→tavl balance == 0) {

〈Rebalance for 0 balance factor after TAVL deletion in right subtree 325 〉
break;

} else /∗ x→tavl balance == −1 ∗/ {
〈Rebalance for − balance factor after TAVL deletion in right subtree 326 〉

}
}

}
This code is included in §318.

§324 〈Rebalance for + balance factor after TAVL deletion in right subtree 324 〉 ≡
struct tavl node ∗w ;
〈Rebalance for + balance factor in TAVL insertion in left subtree 307 〉
q→tavl link [dir] = w ;
This code is included in §323.

§325 〈Rebalance for 0 balance factor after TAVL deletion in right subtree 325 〉 ≡
y→tavl link [0] = x→tavl link [1];
x→tavl link [1] = y ;
x→tavl balance = +1;
y→tavl balance = −1;
This code is included in §323 and §444.

§326 〈Rebalance for − balance factor after TAVL deletion in right subtree 326 〉 ≡
if (x→tavl tag [1] == TAVL_CHILD)

y→tavl link [0] = x→tavl link [1];
else {

Chapter 8: Threaded AVL Trees 203

y→tavl tag [0] = TAVL_THREAD;
x→tavl tag [1] = TAVL_CHILD;

}
x→tavl link [1] = y ;
y→tavl balance = x→tavl balance = 0;

This code is included in §323.

8.5.6 Finding the Parent of a Node

The last component of tavl delete() left undiscussed is the implementation of its helper
function find parent(), which requires an algorithm for finding the parent of an arbitrary
node in a TAVL tree. If there were no efficient algorithm for this purpose, we would have
to keep a stack of parent nodes as we did for unthreaded AVL trees. (This is still an option,
as shown in Exercise 3.) We are fortunate that such an algorithm does exist. Let’s discover
it.

Because child pointers always lead downward in a BST, the only way that we’re going
to get from one node to another one above it is by following a thread. Almost directly from
our definition of threads, we know that if a node q has a right child p, then there is a left
thread in the subtree rooted at p that points back to q . Because a left thread points from
a node to its predecessor, this left thread to q must come from q ’s successor, which we’ll
call s. The situation looks like this:

a

q

s

c

...

p

b

This leads immediately to an algorithm to find q given p, if p is q ’s right child. We
simply follow left links starting at p until we we reach a thread, then we follow that thread.
On the other hand, it doesn’t help if p is q ’s left child, but there’s an analogous situation
with q ’s predecessor in that case.

Will this algorithm work for any node in a TBST? It won’t work for the root node,
because no thread points above the root (see Exercise 2). It will work for any other node,
because any node other than the root has its successor or predecessor as its parent.

Here is the actual code, which finds and returns the parent of node. It traverses both
the left and right subtrees of node at once, using x to move down to the left and y to move
down to the right. When it hits a thread on one side, it checks whether it leads to node’s
parent. If it does, then we’re done. If it doesn’t, then we continue traversing along the
other side, which is guaranteed to lead to node’s parent.

§327 〈Find parent of a TBST node 327 〉 ≡
/∗ Returns the parent of node within tree,

or a pointer to tbst root if s is the root of the tree. ∗/
static struct tbst node ∗find parent (struct tbst table ∗tree, struct tbst node ∗node) {

204 GNU libavl 2.0.1

if (node != tree→tbst root) {
struct tbst node ∗x , ∗y ;
for (x = y = node; ; x = x→tbst link [0], y = y→tbst link [1])

if (y→tbst tag [1] == TBST_THREAD) {
struct tbst node ∗p = y→tbst link [1];
if (p == NULL || p→tbst link [0] != node) {

while (x→tbst tag [0] == TBST_CHILD)
x = x→tbst link [0];

p = x→tbst link [0];
}
return p;

}
else if (x→tbst tag [0] == TBST_THREAD) {

struct tbst node ∗p = x→tbst link [0];
if (p == NULL || p→tbst link [1] != node) {

while (y→tbst tag [1] == TBST_CHILD)
y = y→tbst link [1];

p = y→tbst link [1];
}
return p;

}
}
else return (struct tbst node ∗) &tree→tbst root ;

}
This code is included in §311, §668, and §670.

See also: [Knuth 1997], exercise 2.3.1-19.

Exercises:

*1. Show that finding the parent of a given node using this algorithm, averaged over all the
node within a TBST, requires only a constant number of links to be followed.

2. The structure of threads in our TBSTs force finding the parent of the root node to be
special-cased. Suggest a modification to the tree structure to avoid this.

3. It can take several steps to find the parent of an arbitrary node in a TBST, even though
the operation is “efficient” in the sense of Exercise 7.7-4. On the other hand, finding the
parent of a node is very fast with a stack, but it costs time to construct the stack. Rewrite
tavl delete() to use a stack instead of the parent node algorithm.

8.6 Copying

We can use the tree copy function for TBSTs almost verbatim here. The one necessary
change is that copy node() must copy node balance factors. Here’s the new version:

§328 〈TAVL node copy function 328 〉 ≡
static int copy node (struct tavl table ∗tree, struct tavl node ∗dst , int dir ,

const struct tavl node ∗src, tavl copy func ∗copy) {
struct tavl node ∗new = tree→tavl alloc→libavl malloc (tree→tavl alloc, sizeof ∗new);

Chapter 8: Threaded AVL Trees 205

if (new == NULL)
return 0;

new→tavl link [dir] = dst→tavl link [dir];
new→tavl tag [dir] = TAVL_THREAD;
new→tavl link [!dir] = dst ;
new→tavl tag [!dir] = TAVL_THREAD;
dst→tavl link [dir] = new ;
dst→tavl tag [dir] = TAVL_CHILD;
new→tavl balance = src→tavl balance;
if (copy == NULL)

new→tavl data = src→tavl data;
else {

new→tavl data = copy (src→tavl data, tree→tavl param);
if (new→tavl data == NULL)

return 0;
}
return 1;

}
This code is included in §329.

§329 〈TAVL copy function 329 〉 ≡
〈TAVL node copy function 328 〉
〈TBST copy error helper function; tbst ⇒ tavl 280 〉
〈TBST main copy function; tbst ⇒ tavl 279 〉
This code is included in §300 and §336.

8.7 Testing

The testing code harbors no surprises.
§330 〈 tavl-test.c 330 〉 ≡

〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “tavl.h”
#include “test.h”
〈TBST print function; tbst ⇒ tavl 291 〉
〈BST traverser check function; bst ⇒ tavl 104 〉
〈Compare two TAVL trees for structure and content 331 〉
〈Recursively verify TAVL tree structure 332 〉
〈AVL tree verify function; avl ⇒ tavl 190 〉
〈BST test function; bst ⇒ tavl 100 〉
〈BST overflow test function; bst ⇒ tavl 122 〉

§331 〈Compare two TAVL trees for structure and content 331 〉 ≡
static int compare trees (struct tavl node ∗a, struct tavl node ∗b) {

int okay ;

206 GNU libavl 2.0.1

if (a == NULL || b == NULL) {
if (a != NULL || b != NULL) {

printf ("Ãa=%dÃb=%d\n",
a ? ∗(int ∗) a→tavl data : −1, b ? ∗(int ∗) b→tavl data : −1);

assert (0);
}
return 1;

}
assert (a != b);
if (∗(int ∗) a→tavl data != ∗(int ∗) b→tavl data
|| a→tavl tag [0] != b→tavl tag [0] || a→tavl tag [1] != b→tavl tag [1]
|| a→tavl balance != b→tavl balance) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%dÃ(bal=%d)Ãb=%dÃ(bal=%d)Ãa:",

∗(int ∗) a→tavl data, a→tavl balance,
∗(int ∗) b→tavl data, b→tavl balance);

if (a→tavl tag [0] == TAVL_CHILD) printf ("l");
if (a→tavl tag [1] == TAVL_CHILD) printf ("r");
printf ("Ãb:");
if (b→tavl tag [0] == TAVL_CHILD) printf ("l");
if (b→tavl tag [1] == TAVL_CHILD) printf ("r");
printf ("\n");
return 0;

}
if (a→tavl tag [0] == TAVL_THREAD)

assert ((a→tavl link [0] == NULL) != (a→tavl link [0] != b→tavl link [0]));
if (a→tavl tag [1] == TAVL_THREAD)

assert ((a→tavl link [1] == NULL) != (a→tavl link [1] != b→tavl link [1]));
okay = 1;
if (a→tavl tag [0] == TAVL_CHILD)

okay &= compare trees (a→tavl link [0], b→tavl link [0]);
if (a→tavl tag [1] == TAVL_CHILD)

okay &= compare trees (a→tavl link [1], b→tavl link [1]);
return okay ;

}
This code is included in §330.

§332 〈Recursively verify TAVL tree structure 332 〉 ≡
static void recurse verify tree (struct tavl node ∗node, int ∗okay , size t ∗count ,

int min, int max , int ∗height) {
int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
int subheight [2]; /∗ Heights of subtrees. ∗/
if (node == NULL) {

∗count = 0;
∗height = 0;
return;

Chapter 8: Threaded AVL Trees 207

}
d = ∗(int ∗) node→tavl data;
〈Verify binary search tree ordering 114 〉
subcount [0] = subcount [1] = 0;
subheight [0] = subheight [1] = 0;
if (node→tavl tag [0] == TAVL_CHILD)

recurse verify tree (node→tavl link [0], okay , &subcount [0],
min, d − 1, &subheight [0]);

if (node→tavl tag [1] == TAVL_CHILD)
recurse verify tree (node→tavl link [1], okay , &subcount [1],

d + 1, max , &subheight [1]);
∗count = 1 + subcount [0] + subcount [1];
∗height = 1 + (subheight [0] > subheight [1] ? subheight [0] : subheight [1]);
〈Verify AVL node balance factor; avl ⇒ tavl 189 〉

}
This code is included in §330.

208 GNU libavl 2.0.1

Chapter 9: Threaded Red-Black Trees 209

9 Threaded Red-Black Trees

In the last two chapters, we introduced the idea of a threaded binary search tree, then
applied that idea to AVL trees to produce threaded AVL trees. In this chapter, we will
apply the idea of threading to red-black trees, resulting in threaded red-black or “TRB”
trees.

Here’s an outline of the table implementation for threaded RB trees, which use a trb
prefix.

§333 〈 trb.h 333 〉 ≡
〈License 1 〉
#ifndef TRB_H
#define TRB_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ trb 14 〉
〈RB maximum height; rb ⇒ trb 195 〉
〈TBST table structure; tbst ⇒ trb 250 〉
〈TRB node structure 335 〉
〈TBST traverser structure; tbst ⇒ trb 267 〉
〈Table function prototypes; tbl ⇒ trb 15 〉
#endif /∗ trb.h ∗/

§334 〈 trb.c 334 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “trb.h”
〈TRB functions 336 〉

9.1 Data Types

To make a RB tree node structure into a threaded RB tree node structure, we just add
a pair of tag fields. We also reintroduce a maximum height definition here. It is not used
by traversers, only by by the default versions of trb probe() and trb delete(), for maximum
efficiency.

§335 〈TRB node structure 335 〉 ≡
/∗ Color of a red-black node. ∗/
enum trb color {

TRB_BLACK, /∗ Black. ∗/
TRB_RED /∗ Red. ∗/

};
/∗ Characterizes a link as a child pointer or a thread. ∗/
enum trb tag {

TRB_CHILD, /∗ Child pointer. ∗/
TRB_THREAD /∗ Thread. ∗/

};

210 GNU libavl 2.0.1

/∗ An TRB tree node. ∗/
struct trb node {

struct trb node ∗trb link [2]; /∗ Subtrees. ∗/
void ∗trb data; /∗ Pointer to data. ∗/
unsigned char trb color ; /∗ Color. ∗/
unsigned char trb tag [2]; /∗ Tag fields. ∗/

};
This code is included in §333.

9.2 Operations

Now we’ll implement all the usual operations for TRB trees. Here’s the outline. We
can reuse everything from TBSTs except insertion, deletion, and copy functions. The copy
function is implemented by reusing the version for TAVL trees, but copying colors instead
of balance factors.

§336 〈TRB functions 336 〉 ≡
〈TBST creation function; tbst ⇒ trb 252 〉
〈TBST search function; tbst ⇒ trb 253 〉
〈TRB item insertion function 337 〉
〈Table insertion convenience functions; tbl ⇒ trb 592 〉
〈TRB item deletion function 349 〉
〈TBST traversal functions; tbst ⇒ trb 268 〉
〈TAVL copy function; tavl ⇒ trb; tavl balance ⇒ trb color 329 〉
〈TBST destruction function; tbst ⇒ trb 281 〉
〈Default memory allocation functions; tbl ⇒ trb 6 〉
〈Table assertion functions; tbl ⇒ trb 594 〉
This code is included in §334.

9.3 Insertion

The structure of the insertion routine is predictable:
§337 〈TRB item insertion function 337 〉 ≡

void ∗∗trb probe (struct trb table ∗tree, void ∗item) {
struct trb node ∗pa[TRB_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[TRB_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k ; /∗ Stack height. ∗/
struct trb node ∗p; /∗ Traverses tree looking for insertion point. ∗/
struct trb node ∗n; /∗ Newly inserted node. ∗/
int dir ; /∗ Side of p on which n is inserted. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search TRB tree for insertion point 338 〉
〈Step 2: Insert TRB node 339 〉
〈Step 3: Rebalance after TRB insertion 340 〉
return &n→trb data;

}
This code is included in §336.

Chapter 9: Threaded Red-Black Trees 211

9.3.1 Steps 1 and 2: Search and Insert

As usual, we search the tree from the root and record parents as we go.
§338 〈Step 1: Search TRB tree for insertion point 338 〉 ≡

da[0] = 0;
pa[0] = (struct trb node ∗) &tree→trb root ;
k = 1;
if (tree→trb root != NULL) {

for (p = tree→trb root ; ; p = p→trb link [dir]) {
int cmp = tree→trb compare (item, p→trb data, tree→trb param);
if (cmp == 0)

return &p→trb data;
pa[k] = p;
da[k++] = dir = cmp > 0;
if (p→trb tag [dir] == TRB_THREAD)

break;
}

} else {
p = (struct trb node ∗) &tree→trb root ;
dir = 0;

}
This code is included in §337.

The code for insertion is included within the loop for easy access to the dir variable.
§339 〈Step 2: Insert TRB node 339 〉 ≡

〈Step 2: Insert TBST node; tbst ⇒ trb 256 〉
n→trb color = TRB_RED;
This code is included in §337 and §668.

9.3.2 Step 3: Rebalance

The basic rebalancing loop is unchanged from 〈Step 3: Rebalance after RB insertion
201 〉.

§340 〈Step 3: Rebalance after TRB insertion 340 〉 ≡
while (k >= 3 && pa[k − 1]→trb color == TRB_RED) {

if (da[k − 2] == 0)
{ 〈Left-side rebalancing after TRB insertion 341 〉 }

else { 〈Right-side rebalancing after TRB insertion 345 〉 }
}
tree→trb root→trb color = TRB_BLACK;
This code is included in §337.

The cases for rebalancing are the same as in 〈Left-side rebalancing after RB insertion
202 〉, too. We do need to check for threads, instead of null pointers.

§341 〈Left-side rebalancing after TRB insertion 341 〉 ≡
struct trb node ∗y = pa[k − 2]→trb link [1];
if (pa[k − 2]→trb tag [1] == TRB_CHILD && y→trb color == TRB_RED)

212 GNU libavl 2.0.1

{ 〈Case 1 in left-side TRB insertion rebalancing 342 〉 }
else {

struct trb node ∗x ;

if (da[k − 1] == 0)
y = pa[k − 1];

else { 〈Case 3 in left-side TRB insertion rebalancing 344 〉 }
〈Case 2 in left-side TRB insertion rebalancing 343 〉
break;

}
This code is included in §340.

The rest of this section deals with the individual rebalancing cases, the same as in
unthreaded RB insertion (see Section 6.4.3 [Inserting an RB Node Step 3 - Rebalance],
page 143). Each iteration deals with a node whose color has just been changed to red,
which is the newly inserted node n in the first trip through the loop. In the discussion,
we’ll call this node q .

Case 1: q ’s uncle is red

If node q has an red “uncle”, then only recoloring is required. Because no links are
changed, no threads need to be updated, and we can reuse the code for RB insertion
without change:

§342 〈Case 1 in left-side TRB insertion rebalancing 342 〉 ≡
〈Case 1 in left-side RB insertion rebalancing; rb ⇒ trb 203 〉
This code is included in §341.

Case 2: q is the left child of its parent

If q is the left child of its parent, we rotate right at q ’s grandparent, and recolor a few
nodes. Here’s the transformation:

a

q

b

ypa[k-1]

c

xpa[k-2]

d ⇒

a

q

b

y

c

x

d

This transformation can only cause thread problems with subtree c, since the other sub-
trees stay firmly in place. If c is a thread, then we need to make adjustments after the
transformation to account for the difference between threaded and unthreaded rotation, so
that the final operation looks like this:

Chapter 9: Threaded Red-Black Trees 213

a

q

b

ypa[k-1]

xpa[k-2]

d ⇒

a

q

b

y

x

d

§343 〈Case 2 in left-side TRB insertion rebalancing 343 〉 ≡
〈Case 2 in left-side RB insertion rebalancing; rb ⇒ trb 204 〉
if (y→trb tag [1] == TRB_THREAD) {

y→trb tag [1] = TRB_CHILD;
x→trb tag [0] = TRB_THREAD;
x→trb link [0] = y ;

}
This code is included in §341.

Case 3: q is the right child of its parent

The modification to case 3 is the same as the modification to case 2, but it applies to a
left rotation instead of a right rotation. The adjusted case looks like this:

a

xpa[k-1]

y w

c

pa[k-2]

d ⇒

a

x

y

c

d

§344 〈Case 3 in left-side TRB insertion rebalancing 344 〉 ≡
〈Case 3 in left-side RB insertion rebalancing; rb ⇒ trb 205 〉
if (y→trb tag [0] == TRB_THREAD) {

y→trb tag [0] = TRB_CHILD;
x→trb tag [1] = TRB_THREAD;
x→trb link [1] = y ;

}
This code is included in §341.

9.3.3 Symmetric Case

§345 〈Right-side rebalancing after TRB insertion 345 〉 ≡
struct trb node ∗y = pa[k − 2]→trb link [0];
if (pa[k − 2]→trb tag [0] == TRB_CHILD && y→trb color == TRB_RED)

{ 〈Case 1 in right-side TRB insertion rebalancing 346 〉 }
else {

struct trb node ∗x ;
if (da[k − 1] == 1)

y = pa[k − 1];
else { 〈Case 3 in right-side TRB insertion rebalancing 348 〉 }

214 GNU libavl 2.0.1

〈Case 2 in right-side TRB insertion rebalancing 347 〉
break;

}
This code is included in §340.

§346 〈Case 1 in right-side TRB insertion rebalancing 346 〉 ≡
〈Case 1 in right-side RB insertion rebalancing; rb ⇒ trb 207 〉
This code is included in §345.

§347 〈Case 2 in right-side TRB insertion rebalancing 347 〉 ≡
〈Case 2 in right-side RB insertion rebalancing; rb ⇒ trb 208 〉
if (y→trb tag [0] == TRB_THREAD) {

y→trb tag [0] = TRB_CHILD;
x→trb tag [1] = TRB_THREAD;
x→trb link [1] = y ;

}
This code is included in §345.

§348 〈Case 3 in right-side TRB insertion rebalancing 348 〉 ≡
〈Case 3 in right-side RB insertion rebalancing; rb ⇒ trb 209 〉
if (y→trb tag [1] == TRB_THREAD) {

y→trb tag [1] = TRB_CHILD;
x→trb tag [0] = TRB_THREAD;
x→trb link [0] = y ;

}
This code is included in §345.

Exercises:

1. It could be argued that the algorithm here is “impure” because it uses a stack, when
elimination of the need for a stack is one of the reasons originally given for using threaded
trees. Write a version of trb probe() that avoids the use of a stack. You can use find parent()
from 〈Find parent of a TBST node 327 〉 as a substitute.

9.4 Deletion

The outline for the deletion function follows the usual pattern.
§349 〈TRB item deletion function 349 〉 ≡

void ∗trb delete (struct trb table ∗tree, const void ∗item) {
struct trb node ∗pa[TRB_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[TRB_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k = 0; /∗ Stack height. ∗/
struct trb node ∗p;
int cmp, dir ;
assert (tree != NULL && item != NULL);
〈Step 1: Search TRB tree for item to delete 350 〉
〈Step 2: Delete item from TRB tree 351 〉
〈Step 3: Rebalance tree after TRB deletion 356 〉

Chapter 9: Threaded Red-Black Trees 215

〈Step 4: Finish up after TRB deletion 362 〉
}
This code is included in §336.

9.4.1 Step 1: Search

There’s nothing new or interesting in the search code.
§350 〈Step 1: Search TRB tree for item to delete 350 〉 ≡

if (tree→trb root == NULL)
return NULL;

p = (struct trb node ∗) &tree→trb root ;
for (cmp = −1; cmp != 0; cmp = tree→trb compare (item, p→trb data, tree→trb param)) {

dir = cmp > 0;
pa[k] = p;
da[k++] = dir ;
if (p→trb tag [dir] == TRB_THREAD)

return NULL;
p = p→trb link [dir];

}
item = p→trb data;
This code is included in §349 and §659.

9.4.2 Step 2: Delete

The code for node deletion is a combination of RB deletion (see Section 6.5.1 [Deleting
an RB Node Step 2 - Delete], page 151) and TBST deletion (see Section 7.7 [Deleting from
a TBST], page 168). The node to delete is p, and after deletion the stack contains all the
nodes down to where rebalancing begins. The cases are the same as for TBST deletion:

§351 〈Step 2: Delete item from TRB tree 351 〉 ≡
if (p→trb tag [1] == TRB_THREAD) {

if (p→trb tag [0] == TRB_CHILD)
{ 〈Case 1 in TRB deletion 352 〉 }

else { 〈Case 2 in TRB deletion 353 〉 }
} else {

enum trb color t ;
struct trb node ∗r = p→trb link [1];
if (r→trb tag [0] == TRB_THREAD)

{ 〈Case 3 in TRB deletion 354 〉 }
else { 〈Case 4 in TRB deletion 355 〉 }

}
This code is included in §349.

Case 1: p has a right thread and a left child

If the node to delete p has a right thread and a left child, then we replace it by its left
child. We also have to chase down the right thread that pointed to p. The code is almost

216 GNU libavl 2.0.1

the same as 〈Case 1 in TBST deletion 260 〉, but we use the stack here instead of a single
parent pointer.

§352 〈Case 1 in TRB deletion 352 〉 ≡
struct trb node ∗t = p→trb link [0];
while (t→trb tag [1] == TRB_CHILD)

t = t→trb link [1];
t→trb link [1] = p→trb link [1];
pa[k − 1]→trb link [da[k − 1]] = p→trb link [0];
This code is included in §351.

Case 2: p has a right thread and a left thread

Deleting a leaf node is the same process as for a TBST. The changes from 〈Case 2 in
TBST deletion 261 〉 are again due to the use of a stack.

§353 〈Case 2 in TRB deletion 353 〉 ≡
pa[k − 1]→trb link [da[k − 1]] = p→trb link [da[k − 1]];
if (pa[k − 1] != (struct trb node ∗) &tree→trb root)

pa[k − 1]→trb tag [da[k − 1]] = TRB_THREAD;
This code is included in §351.

Case 3: p’s right child has a left thread

The code for case 3 merges 〈Case 3 in TBST deletion 262 〉 with 〈Case 2 in RB deletion
223 〉. First, the node is deleted in the same way used for a TBST. Then the colors of p and
r are swapped, and r is added to the stack, in the same way as for RB deletion.

§354 〈Case 3 in TRB deletion 354 〉 ≡
r→trb link [0] = p→trb link [0];
r→trb tag [0] = p→trb tag [0];
if (r→trb tag [0] == TRB_CHILD) {

struct trb node ∗t = r→trb link [0];
while (t→trb tag [1] == TRB_CHILD)

t = t→trb link [1];
t→trb link [1] = r ;

}
pa[k − 1]→trb link [da[k − 1]] = r ;
t = r→trb color ;
r→trb color = p→trb color ;
p→trb color = t ;
da[k] = 1;
pa[k++] = r ;
This code is included in §351.

Case 4: p’s right child has a left child

Case 4 is a mix of 〈Case 4 in TBST deletion 263 〉 and 〈Case 3 in RB deletion 224 〉.
It follows the outline of TBST deletion, but updates the stack. After the deletion it also
swaps the colors of p and s as in RB deletion.

Chapter 9: Threaded Red-Black Trees 217

§355 〈Case 4 in TRB deletion 355 〉 ≡
struct trb node ∗s;
int j = k++;
for (;;) {

da[k] = 0;
pa[k++] = r ;
s = r→trb link [0];
if (s→trb tag [0] == TRB_THREAD)

break;
r = s;

}
da[j] = 1;
pa[j] = s;
if (s→trb tag [1] == TRB_CHILD)

r→trb link [0] = s→trb link [1];
else {

r→trb link [0] = s;
r→trb tag [0] = TRB_THREAD;

}
s→trb link [0] = p→trb link [0];
if (p→trb tag [0] == TRB_CHILD) {

struct trb node ∗t = p→trb link [0];
while (t→trb tag [1] == TRB_CHILD)

t = t→trb link [1];
t→trb link [1] = s;
s→trb tag [0] = TRB_CHILD;

}
s→trb link [1] = p→trb link [1];
s→trb tag [1] = TRB_CHILD;
t = s→trb color ;
s→trb color = p→trb color ;
p→trb color = t ;
pa[j − 1]→trb link [da[j − 1]] = s;
This code is included in §351.

Exercises:

1. Rewrite 〈Case 4 in TAVL deletion 317 〉 to replace the deleted node’s tavl data by its
successor, then delete the successor, instead of shuffling pointers. (Refer back to Exercise
4.8-3 for an explanation of why this approach cannot be used in Libavl.)

9.4.3 Step 3: Rebalance

The outline for rebalancing after threaded RB deletion is the same as for the unthreaded
case (see Section 6.5.2 [Deleting an RB Node Step 3 - Rebalance], page 154):

§356 〈Step 3: Rebalance tree after TRB deletion 356 〉 ≡

218 GNU libavl 2.0.1

if (p→trb color == TRB_BLACK) {
for (; k > 1; k−−) {

if (pa[k − 1]→trb tag [da[k − 1]] == TRB_CHILD) {
struct trb node ∗x = pa[k − 1]→trb link [da[k − 1]];
if (x→trb color == TRB_RED) {

x→trb color = TRB_BLACK;
break;

}
}
if (da[k − 1] == 0)

{ 〈Left-side rebalancing after TRB deletion 357 〉 }
else { 〈Right-side rebalancing after TRB deletion 363 〉 }

}
if (tree→trb root != NULL)

tree→trb root→trb color = TRB_BLACK;
}
This code is included in §349.

The rebalancing cases are the same, too. We need to check for thread tags, not for null
pointers, though, in some places:

§357 〈Left-side rebalancing after TRB deletion 357 〉 ≡
struct trb node ∗w = pa[k − 1]→trb link [1];
if (w→trb color == TRB_RED)

{ 〈Ensure w is black in left-side TRB deletion rebalancing 358 〉 }
if ((w→trb tag [0] == TRB_THREAD || w→trb link [0]→trb color == TRB_BLACK)

&& (w→trb tag [1] == TRB_THREAD || w→trb link [1]→trb color == TRB_BLACK))
{ 〈Case 1 in left-side TRB deletion rebalancing 359 〉 }

else {
if (w→trb tag [1] == TRB_THREAD || w→trb link [1]→trb color == TRB_BLACK)

{ 〈Transform left-side TRB deletion rebalancing case 3 into case 2 361 〉 }
〈Case 2 in left-side TRB deletion rebalancing 360 〉
break;

}
This code is included in §356.

Case Reduction: Ensure w is black

This transformation does not move around any subtrees that might be threads, so there
is no need for it to change.

§358 〈Ensure w is black in left-side TRB deletion rebalancing 358 〉 ≡
〈Ensure w is black in left-side RB deletion rebalancing; rb ⇒ trb 228 〉
This code is included in §357.

Case 1: w has no red children

This transformation just recolors nodes, so it also does not need any changes.

Chapter 9: Threaded Red-Black Trees 219

§359 〈Case 1 in left-side TRB deletion rebalancing 359 〉 ≡
〈Case 1 in left-side RB deletion rebalancing; rb ⇒ trb 229 〉
This code is included in §357.

Case 2: w ’s right child is red

If w has a red right child and a left thread, then it is necessary to adjust tags and links
after the left rotation at w and recoloring, as shown in this diagram:

a

Ax

b

Bpa[x-1]

C w

d

D

e

⇒

a

A

b

B

C

d

D

e

§360 〈Case 2 in left-side TRB deletion rebalancing 360 〉 ≡
〈Case 2 in left-side RB deletion rebalancing; rb ⇒ trb 230 〉
if (w→trb tag [0] == TRB_THREAD) {

w→trb tag [0] = TRB_CHILD;
pa[k − 1]→trb tag [1] = TRB_THREAD;
pa[k − 1]→trb link [1] = w ;

}
This code is included in §357.

Case 3: w ’s left child is red

If w has a red left child, which has a right thread, then we again need to adjust tags and
links after right rotation at w and recoloring, as shown here:

a

Ax

b

Bpa[k-1]

c

C

D w

e
⇒

a

Ax

b

Bpa[k-1]

c

C w

D

e

§361 〈Transform left-side TRB deletion rebalancing case 3 into case 2 361 〉 ≡
〈Transform left-side RB deletion rebalancing case 3 into case 2; rb ⇒ trb 231 〉
if (w→trb tag [1] == TRB_THREAD) {

w→trb tag [1] = TRB_CHILD;
w→trb link [1]→trb tag [0] = TRB_THREAD;
w→trb link [1]→trb link [0] = w ;

}
This code is included in §357.

220 GNU libavl 2.0.1

9.4.4 Step 4: Finish Up

All that’s left to do is free the node, update the count, and return the deleted item:
§362 〈Step 4: Finish up after TRB deletion 362 〉 ≡

tree→trb alloc→libavl free (tree→trb alloc, p);
tree→trb count−−;
return (void ∗) item;
This code is included in §349.

9.4.5 Symmetric Case

§363 〈Right-side rebalancing after TRB deletion 363 〉 ≡
struct trb node ∗w = pa[k − 1]→trb link [0];
if (w→trb color == TRB_RED)

{ 〈Ensure w is black in right-side TRB deletion rebalancing 364 〉 }
if ((w→trb tag [0] == TRB_THREAD || w→trb link [0]→trb color == TRB_BLACK)

&& (w→trb tag [1] == TRB_THREAD || w→trb link [1]→trb color == TRB_BLACK))
{ 〈Case 1 in right-side TRB deletion rebalancing 365 〉 }

else {
if (w→trb tag [0] == TRB_THREAD || w→trb link [0]→trb color == TRB_BLACK)

{ 〈Transform right-side TRB deletion rebalancing case 3 into case 2 367 〉 }
〈Case 2 in right-side TRB deletion rebalancing 366 〉
break;

}
This code is included in §356.

§364 〈Ensure w is black in right-side TRB deletion rebalancing 364 〉 ≡
〈Ensure w is black in right-side RB deletion rebalancing; rb ⇒ trb 234 〉
This code is included in §363.

§365 〈Case 1 in right-side TRB deletion rebalancing 365 〉 ≡
〈Case 1 in right-side RB deletion rebalancing; rb ⇒ trb 235 〉
This code is included in §363.

§366 〈Case 2 in right-side TRB deletion rebalancing 366 〉 ≡
〈Case 2 in right-side RB deletion rebalancing; rb ⇒ trb 237 〉
if (w→trb tag [1] == TRB_THREAD) {

w→trb tag [1] = TRB_CHILD;
pa[k − 1]→trb tag [0] = TRB_THREAD;
pa[k − 1]→trb link [0] = w ;

}
This code is included in §363.

§367 〈Transform right-side TRB deletion rebalancing case 3 into case 2 367 〉 ≡
〈Transform right-side RB deletion rebalancing case 3 into case 2; rb ⇒ trb 236 〉
if (w→trb tag [0] == TRB_THREAD) {

w→trb tag [0] = TRB_CHILD;
w→trb link [0]→trb tag [1] = TRB_THREAD;

Chapter 9: Threaded Red-Black Trees 221

w→trb link [0]→trb link [1] = w ;
}
This code is included in §363.

Exercises:

1. Write another version of trb delete() that does not use a stack. You can use 〈Find parent
of a TBST node 327 〉 to find the parent of a node.

9.5 Testing

The testing code harbors no surprises.
§368 〈 trb-test.c 368 〉 ≡

〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “trb.h”
#include “test.h”
〈TBST print function; tbst ⇒ trb 291 〉
〈BST traverser check function; bst ⇒ trb 104 〉
〈Compare two TRB trees for structure and content 369 〉
〈Recursively verify TRB tree structure 370 〉
〈RB tree verify function; rb ⇒ trb 244 〉
〈BST test function; bst ⇒ trb 100 〉
〈BST overflow test function; bst ⇒ trb 122 〉

§369 〈Compare two TRB trees for structure and content 369 〉 ≡
static int compare trees (struct trb node ∗a, struct trb node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

if (a != NULL || b != NULL) {
printf ("Ãa=%dÃb=%d\n",

a ? ∗(int ∗) a→trb data : −1, b ? ∗(int ∗) b→trb data : −1);
assert (0);

}
return 1;

}
assert (a != b);
if (∗(int ∗) a→trb data != ∗(int ∗) b→trb data
|| a→trb tag [0] != b→trb tag [0] || a→trb tag [1] != b→trb tag [1]
|| a→trb color != b→trb color) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%d%cÃb=%d%cÃa:",

∗(int ∗) a→trb data, a→trb color == TRB_RED ? ’r’ : ’b’,
∗(int ∗) b→trb data, b→trb color == TRB_RED ? ’r’ : ’b’);

if (a→trb tag [0] == TRB_CHILD) printf ("l");
if (a→trb tag [1] == TRB_CHILD) printf ("r");

222 GNU libavl 2.0.1

printf ("Ãb:");
if (b→trb tag [0] == TRB_CHILD) printf ("l");
if (b→trb tag [1] == TRB_CHILD) printf ("r");
printf ("\n");
return 0;

}
if (a→trb tag [0] == TRB_THREAD)

assert ((a→trb link [0] == NULL) != (a→trb link [0] != b→trb link [0]));
if (a→trb tag [1] == TRB_THREAD)

assert ((a→trb link [1] == NULL) != (a→trb link [1] != b→trb link [1]));
okay = 1;
if (a→trb tag [0] == TRB_CHILD)

okay &= compare trees (a→trb link [0], b→trb link [0]);
if (a→trb tag [1] == TRB_CHILD)

okay &= compare trees (a→trb link [1], b→trb link [1]);
return okay ;

}
This code is included in §368.

§370 〈Recursively verify TRB tree structure 370 〉 ≡
static void recurse verify tree (struct trb node ∗node, int ∗okay , size t ∗count ,

int min, int max , int ∗bh) {
int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
int subbh[2]; /∗ Black-heights of subtrees. ∗/
if (node == NULL) {

∗count = 0;
∗bh = 0;
return;

}
d = ∗(int ∗) node→trb data;
〈Verify binary search tree ordering 114 〉
subcount [0] = subcount [1] = 0;
subbh[0] = subbh[1] = 0;
if (node→trb tag [0] == TRB_CHILD)

recurse verify tree (node→trb link [0], okay , &subcount [0],
min, d − 1, &subbh[0]);

if (node→trb tag [1] == TRB_CHILD)
recurse verify tree (node→trb link [1], okay , &subcount [1],

d + 1, max , &subbh[1]);
∗count = 1 + subcount [0] + subcount [1];
∗bh = (node→trb color == TRB_BLACK) + subbh[0];
〈Verify RB node color; rb ⇒ trb 241 〉
〈Verify TRB node rule 1 compliance 371 〉
〈Verify RB node rule 2 compliance; rb ⇒ trb 243 〉

}

Chapter 9: Threaded Red-Black Trees 223

This code is included in §368.

§371 〈Verify TRB node rule 1 compliance 371 〉 ≡
/∗ Verify compliance with rule 1. ∗/
if (node→trb color == TRB_RED) {

if (node→trb tag [0] == TRB_CHILD && node→trb link [0]→trb color == TRB_RED) {
printf ("ÃRedÃnodeÃ%dÃhasÃredÃleftÃchildÃ%d\n",

d , ∗(int ∗) node→trb link [0]→trb data);
∗okay = 0;

}
if (node→trb tag [1] == TRB_CHILD && node→trb link [1]→trb color == TRB_RED) {

printf ("ÃRedÃnodeÃ%dÃhasÃredÃrightÃchildÃ%d\n",
d , ∗(int ∗) node→trb link [1]→trb data);

∗okay = 0;
}

}
This code is included in §370.

224 GNU libavl 2.0.1

Chapter 10: Right-Threaded Binary Search Trees 225

10 Right-Threaded Binary Search Trees

We originally introduced threaded trees to allow for traversal without maintaining a
stack explicitly. This worked out well, so we implemented tables using threaded BSTs and
AVL and RB trees. However, maintaining the threads can take some time. It would be nice
if we could have the advantages of threads without so much of the overhead.

In one common special case, we can. Threaded trees are symmetric: there are left
threads for moving to node predecessors and right threads for move to node successors. But
traversals are not symmetric: many algorithms that traverse table entries only from least
to greatest, never backing up. This suggests a matching asymmetric tree structure that has
only right threads.

We can do this. In this chapter, we will develop a table implementation for a new kind
of binary tree, called a right-threaded binary search tree, right-threaded tree, or simply
“RTBST”, that has threads only on the right side of nodes. Construction and modification
of such trees can be faster and simpler than threaded trees because there is no need to
maintain the left threads.

There isn’t anything fundamentally new here, but just for completeness, here’s an ex-
ample of a right-threaded tree:

1

2

3

4

5

6

7

8

9

Keep in mind that although it is not efficient, it is still possible to traverse a right-
threaded tree in order from greatest to least.1 If it were not possible at all, then we
could not build a complete table implementation based on right-threaded trees, because the
definition of a table includes the ability to traverse it in either direction (see Section 2.10.2
[Manipulators], page 16).

Here’s the outline of the RTBST code, which uses the prefix rtbst :
§372 〈 rtbst.h 372 〉 ≡

〈License 1 〉
#ifndef RTBST_H
#define RTBST_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ rtbst 14 〉
〈TBST table structure; tbst ⇒ rtbst 250 〉
〈RTBST node structure 374 〉
〈TBST traverser structure; tbst ⇒ rtbst 267 〉
〈Table function prototypes; tbl ⇒ rtbst 15 〉
〈BST extra function prototypes; bst ⇒ rtbst 88 〉

1 It can be efficient if we use a stack to do it, but that kills the advantage of threading the tree. It would
be possible to implement two sets of traversers for right-threaded trees, one with a stack, one without,
but in that case it’s probably better to just use a threaded tree.

226 GNU libavl 2.0.1

#endif /∗ rtbst.h ∗/
§373 〈 rtbst.c 373 〉 ≡

〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “rtbst.h”
〈RTBST functions 375 〉
See also: [Knuth 1997], section 2.3.1.

Exercises:

1. We can define a left-threaded tree in a way analogous to a right-threaded tree, as a
binary search tree with threads only on the left sides of nodes. Is this a useful thing to do?

10.1 Data Types

§374 〈RTBST node structure 374 〉 ≡
/∗ Characterizes a link as a child pointer or a thread. ∗/
enum rtbst tag {

RTBST_CHILD, /∗ Child pointer. ∗/
RTBST_THREAD /∗ Thread. ∗/

};
/∗ A threaded binary search tree node. ∗/
struct rtbst node {

struct rtbst node ∗rtbst link [2]; /∗ Subtrees. ∗/
void ∗rtbst data; /∗ Pointer to data. ∗/
unsigned char rtbst rtag ; /∗ Tag field. ∗/

};
This code is included in §372.

10.2 Operations

§375 〈RTBST functions 375 〉 ≡
〈TBST creation function; tbst ⇒ rtbst 252 〉
〈RTBST search function 376 〉
〈RTBST item insertion function 377 〉
〈Table insertion convenience functions; tbl ⇒ rtbst 592 〉
〈RTBST item deletion function 380 〉
〈RTBST traversal functions 395 〉
〈RTBST copy function 406 〉
〈RTBST destruction function 407 〉
〈RTBST balance function 408 〉
〈Default memory allocation functions; tbl ⇒ rtbst 6 〉
〈Table assertion functions; tbl ⇒ rtbst 594 〉
This code is included in §373.

Chapter 10: Right-Threaded Binary Search Trees 227

10.3 Search

A right-threaded tree is inherently asymmetric, so many of the algorithms on it will
necessarily be asymmetric as well. The search function is the simplest demonstration of
this. For descent to the left, we test for a null left child with rtbst link [0]; for descent to the
right, we test for a right thread with rtbst rtag . Otherwise, the code is familiar:

§376 〈RTBST search function 376 〉 ≡
void ∗rtbst find (const struct rtbst table ∗tree, const void ∗item) {

const struct rtbst node ∗p;
int dir ;
assert (tree != NULL && item != NULL);
if (tree→rtbst root == NULL)

return NULL;
for (p = tree→rtbst root ; ; p = p→rtbst link [dir]) {

int cmp = tree→rtbst compare (item, p→rtbst data, tree→rtbst param);
if (cmp == 0)

return p→rtbst data;
dir = cmp > 0;
if (dir == 0) {

if (p→rtbst link [0] == NULL)
return NULL;

} else /∗ dir == 1 ∗/ {
if (p→rtbst rtag == RTBST_THREAD)

return NULL;
}

}
}
This code is included in §375, §418, and §455.

10.4 Insertion

Regardless of the kind of binary tree we’re dealing with, adding a new node requires
setting three pointer fields: the parent pointer and the two child pointers of the new node.
On the other hand, we do save a tiny bit on tags: we set either 1 or 2 tags here as opposed
to a constant of 3 in 〈TBST item insertion function 254 〉.

Here is the outline:
§377 〈RTBST item insertion function 377 〉 ≡

void ∗∗rtbst probe (struct rtbst table ∗tree, void ∗item) {
struct rtbst node ∗p; /∗ Current node in search. ∗/
int dir ; /∗ Side of p on which to insert the new node. ∗/
struct rtbst node ∗n; /∗ New node. ∗/
〈Step 1: Search RTBST for insertion point 378 〉
〈Step 2: Insert new node into RTBST tree 379 〉

}
This code is included in §375.

228 GNU libavl 2.0.1

The code to search for the insertion point is not unusual:
§378 〈Step 1: Search RTBST for insertion point 378 〉 ≡

if (tree→rtbst root != NULL)
for (p = tree→rtbst root ; ; p = p→rtbst link [dir]) {

int cmp = tree→rtbst compare (item, p→rtbst data, tree→rtbst param);
if (cmp == 0)

return &p→rtbst data;
dir = cmp > 0;
if (dir == 0) {

if (p→rtbst link [0] == NULL)
break;

} else /∗ dir == 1 ∗/ {
if (p→rtbst rtag == RTBST_THREAD)

break;
}

}
else {

p = (struct rtbst node ∗) &tree→rtbst root ;
dir = 0;

}
This code is included in §377.

Now for the insertion code. An insertion to the left of a node p in a right-threaded tree
replaces the left link by the new node n. The new node in turn has a null left child and a
right thread pointing back to p:

p

a
⇒

n

p

a

An insertion to the right of p replaces the right thread by the new child node n. The
new node has a null left child and a right thread that points where p’s right thread formerly
pointed:

...

a

p

s

⇒
...

a

p

n

s

We can handle both of these cases in one code segment. The difference is in the treatment
of n’s right child and p’s right tag. Insertion into an empty tree is handled as a special case
as well:

§379 〈Step 2: Insert new node into RTBST tree 379 〉 ≡
n = tree→rtbst alloc→libavl malloc (tree→rtbst alloc, sizeof ∗n);
if (n == NULL)

Chapter 10: Right-Threaded Binary Search Trees 229

return NULL;
tree→rtbst count++;
n→rtbst data = item;
n→rtbst link [0] = NULL;
if (dir == 0) {

if (tree→rtbst root != NULL)
n→rtbst link [1] = p;

else n→rtbst link [1] = NULL;
} else /∗ dir == 1 ∗/ {

p→rtbst rtag = RTBST_CHILD;
n→rtbst link [1] = p→rtbst link [1];

}
n→rtbst rtag = RTBST_THREAD;
p→rtbst link [dir] = n;
return &n→rtbst data;
This code is included in §377.

10.5 Deletion

Deleting a node from an RTBST can be done using the same ideas as for other kinds of
trees we’ve seen. However, as it turns out, a variant of this usual technique allows for faster
code. In this section, we will implement the usual method, then the improved version. The
latter is actually used in Libavl.

Here is the outline of the function. Step 2 is the only part that varies between versions:
§380 〈RTBST item deletion function 380 〉 ≡

void ∗rtbst delete (struct rtbst table ∗tree, const void ∗item) {
struct rtbst node ∗p; /∗ Node to delete. ∗/
struct rtbst node ∗q ; /∗ Parent of p. ∗/
int dir ; /∗ Index into q→rtbst link [] that leads to p. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Find RTBST node to delete 381 〉
〈Step 2: Delete RTBST node, left-looking 388 〉
〈Step 3: Finish up after deleting RTBST node 382 〉

}
This code is included in §375.

The first step just finds the node to delete. After it executes, p is the node to delete and
q and dir are set such that q→rtbst link [dir] == p.

§381 〈Step 1: Find RTBST node to delete 381 〉 ≡
if (tree→rtbst root == NULL)

return NULL;
p = tree→rtbst root ;
q = (struct rtbst node ∗) &tree→rtbst root ;
dir = 0;
if (p == NULL)

230 GNU libavl 2.0.1

return NULL;

for (;;) {
int cmp = tree→rtbst compare (item, p→rtbst data, tree→rtbst param);
if (cmp == 0)

break;

dir = cmp > 0;
if (dir == 0) {

if (p→rtbst link [0] == NULL)
return NULL;

} else /∗ dir == 1 ∗/ {
if (p→rtbst rtag == RTBST_THREAD)

return NULL;
}
q = p;
p = p→rtbst link [dir];

}
item = p→rtbst data;

This code is included in §380.

The final step is also common. We just clean up and return:

§382 〈Step 3: Finish up after deleting RTBST node 382 〉 ≡
tree→rtbst alloc→libavl free (tree→rtbst alloc, p);
tree→rtbst count−−;
return (void ∗) item;

This code is included in §380.

10.5.1 Right-Looking Deletion

Our usual algorithm for deletion looks at the right subtree of the node to be deleted,
so we call it “right-looking.” The outline for this kind of deletion is the same as in TBST
deletion (see Section 7.7 [Deleting from a TBST], page 168):

§383 〈Step 2: Delete RTBST node, right-looking 383 〉 ≡
if (p→rtbst rtag == RTBST_THREAD) {

if (p→rtbst link [0] != NULL)
{ 〈Case 1 in right-looking RTBST deletion 384 〉 }

else { 〈Case 2 in right-looking RTBST deletion 385 〉 }
} else {

struct rtbst node ∗r = p→rtbst link [1];
if (r→rtbst link [0] == NULL)

{ 〈Case 3 in right-looking RTBST deletion 386 〉 }
else { 〈Case 4 in right-looking RTBST deletion 387 〉 }

}
Each of the four cases, presented below, is closely analogous to the same case in TBST

deletion.

Chapter 10: Right-Threaded Binary Search Trees 231

Case 1: p has a right thread and a left child

In this case, node p has a right thread and a left child. As in a TBST, this means
that after deleting p we must update the right thread in p’s former left subtree to point to
p’s replacement. The only difference from 〈Case 1 in TBST deletion 260 〉 is in structure
members:

§384 〈Case 1 in right-looking RTBST deletion 384 〉 ≡
struct rtbst node ∗t = p→rtbst link [0];
while (t→rtbst rtag == RTBST_CHILD)

t = t→rtbst link [1];
t→rtbst link [1] = p→rtbst link [1];
q→rtbst link [dir] = p→rtbst link [0];
This code is included in §383.

Case 2: p has a right thread and no left child

If node p is a leaf, then there are two subcases, according to whether p is a left child or
a right child of its parent q . If dir is 0, then p is a left child and the pointer from its parent
must be set to NULL. If dir is 1, then p is a right child and the link from its parent must be
changed to a thread to its successor.

In either of these cases we must set q→rtbst link [dir]: if dir is 0, we set it to NULL,
otherwise dir is 1 and we set it to p→rtbst link [1]. However, we know that p→rtbst link [0]
is NULL, because p is a leaf, so we can instead unconditionally assign p→rtbst link [dir]. In
addition, if dir is 1, then we must tag q ’s right link as a thread.

If q is the pseudo-root, then dir is 0 and everything works out fine with no need for a
special case.

§385 〈Case 2 in right-looking RTBST deletion 385 〉 ≡
q→rtbst link [dir] = p→rtbst link [dir];
if (dir == 1)

q→rtbst rtag = RTBST_THREAD;
This code is included in §383.

Case 3: p’s right child has no left child

Code for this case, where p has a right child r that itself has no left child, is almost
identical to 〈Case 3 in TBST deletion 262 〉. There is no left tag to copy, but it is still
necessary to chase down the right thread in r ’s new left subtree (the same as p’s former left
subtree):

§386 〈Case 3 in right-looking RTBST deletion 386 〉 ≡
r→rtbst link [0] = p→rtbst link [0];
if (r→rtbst link [0] != NULL) {

struct rtbst node ∗t = r→rtbst link [0];
while (t→rtbst rtag == RTBST_CHILD)

t = t→rtbst link [1];
t→rtbst link [1] = r ;

}

232 GNU libavl 2.0.1

q→rtbst link [dir] = r ;
This code is included in §383.

Case 4: p’s right child has a left child

Code for case 4, the most general case, is very similar to 〈Case 4 in TBST deletion 263 〉.
The only notable difference is in the subcase where s has a right thread: in that case we
just set r ’s left link to NULL instead of having to set it up as a thread.

§387 〈Case 4 in right-looking RTBST deletion 387 〉 ≡
struct rtbst node ∗s;
for (;;) {

s = r→rtbst link [0];
if (s→rtbst link [0] == NULL)

break;
r = s;

}
if (s→rtbst rtag == RTBST_CHILD)

r→rtbst link [0] = s→rtbst link [1];
else r→rtbst link [0] = NULL;
s→rtbst link [0] = p→rtbst link [0];
if (p→rtbst link [0] != NULL) {

struct rtbst node ∗t = p→rtbst link [0];
while (t→rtbst rtag == RTBST_CHILD)

t = t→rtbst link [1];
t→rtbst link [1] = s;

}
s→rtbst link [1] = p→rtbst link [1];
s→rtbst rtag = RTBST_CHILD;
q→rtbst link [dir] = s;
This code is included in §383.

Exercises:

1. Rewrite 〈Case 4 in right-looking RTBST deletion 387 〉 to replace the deleted node’s
rtavl data by its successor, then delete the successor, instead of shuffling pointers. (Refer
back to Exercise 4.8-3 for an explanation of why this approach cannot be used in Libavl.)

10.5.2 Left-Looking Deletion

The previous section implemented the “right-looking” form of deletion used elsewhere
in Libavl. Compared to deletion in a fully threaded binary tree, the benefits to using an
RTBST with this kind of deletion are minimal:
• Cases 1 and 2 are similar code in both TBST and RTBST deletion.
• Case 3 in an RTBST avoids one tag copy required in TBST deletion.
• One subcase of case 4 in an RTBST avoids one tag assignment required in the same

subcase of TBST deletion.

Chapter 10: Right-Threaded Binary Search Trees 233

This is hardly worth it. We saved at most one assignment per call. We need something
better if it’s ever going to be worthwhile to use right-threaded trees.

Fortunately, there is a way that we can save a little more. This is by changing our right-
looking deletion into left-looking deletion, by switching the use of left and right children in
the algorithm. In a BST or TBST, this symmetrical change in the algorithm would have no
effect, because the BST and TBST node structures are themselves symmetric. But in an
asymmetric RTBST even a symmetric change can have a significant effect on an algorithm,
as we’ll see.

The cases for left-looking deletion are outlined in the same way as for right-looking
deletion:

§388 〈Step 2: Delete RTBST node, left-looking 388 〉 ≡
if (p→rtbst link [0] == NULL) {

if (p→rtbst rtag == RTBST_CHILD)
{ 〈Case 1 in left-looking RTBST deletion 389 〉 }

else { 〈Case 2 in left-looking RTBST deletion 390 〉 }
} else {

struct rtbst node ∗r = p→rtbst link [0];
if (r→rtbst rtag == RTBST_THREAD)

{ 〈Case 3 in left-looking RTBST deletion 391 〉 }
else { 〈Case 4 in left-looking RTBST deletion 392 〉 }

}
This code is included in §380.

Case 1: p has a right child but no left child

If the node to delete p has a right child but no left child, we can just replace it by its
right child. There is no right thread to update in p’s left subtree because p has no left child,
and there is no left thread to update because a right-threaded tree has no left threads.

The deletion looks like this if p’s right child is designated x :

p

a

x

b

⇒
a

x

b

§389 〈Case 1 in left-looking RTBST deletion 389 〉 ≡
q→rtbst link [dir] = p→rtbst link [1];
This code is included in §388.

Case 2: p has a right thread and no left child

This case is analogous to case 2 in right-looking deletion covered earlier. The same
discussion applies.

§390 〈Case 2 in left-looking RTBST deletion 390 〉 ≡
q→rtbst link [dir] = p→rtbst link [dir];
if (dir == 1)

234 GNU libavl 2.0.1

q→rtbst rtag = RTBST_THREAD;
This code is included in §388.

Case 3: p’s left child has a right thread

If p has a left child r that itself has a right thread, then we replace p by r . Node r
receives p’s former right link, as shown here:

a

r

p

b ⇒
a

r

b

There is no need to fiddle with threads. If r has a right thread then it gets replaced
by p’s right child or thread anyhow. Any right thread within r ’s left subtree either points
within that subtree or to r . Finally, r ’s right subtree cannot cause problems.

§391 〈Case 3 in left-looking RTBST deletion 391 〉 ≡
r→rtbst link [1] = p→rtbst link [1];
r→rtbst rtag = p→rtbst rtag ;
q→rtbst link [dir] = r ;
This code is included in §388.

Case 4: p’s left child has a right child

The final case handles deletion of a node p with a left child r that in turn has a right
child. The code here follows the same pattern as 〈Case 4 in TBST deletion 263 〉 (see the
discussion there for details). The first step is to find the predecessor s of node p:

§392 〈Case 4 in left-looking RTBST deletion 392 〉 ≡
struct rtbst node ∗s;
for (;;) {

s = r→rtbst link [1];
if (s→rtbst rtag == RTBST_THREAD)

break;
r = s;

}
See also §393 and §394.

This code is included in §388.

Next, we update r , handling two subcases depending on whether s has a left child:
§393 〈Case 4 in left-looking RTBST deletion 392 〉 +≡

if (s→rtbst link [0] != NULL)
r→rtbst link [1] = s→rtbst link [0];

else {
r→rtbst link [1] = s;
r→rtbst rtag = RTBST_THREAD;

}

Chapter 10: Right-Threaded Binary Search Trees 235

The final step is to copy p’s fields into s, then set q ’s child pointer to point to s instead
of p. There is no need to chase down any threads.

§394 〈Case 4 in left-looking RTBST deletion 392 〉 +≡
s→rtbst link [0] = p→rtbst link [0];
s→rtbst link [1] = p→rtbst link [1];
s→rtbst rtag = p→rtbst rtag ;
q→rtbst link [dir] = s;

Exercises:

1. Rewrite 〈Case 4 in left-looking RTBST deletion 392 〉 to replace the deleted node’s
rtavl data by its predecessor, then delete the predecessor, instead of shuffling pointers.
(Refer back to Exercise 4.8-3 for an explanation of why this approach cannot be used in
Libavl.)

10.5.3 Aside: Comparison of Deletion Algorithms

This book has presented algorithms for deletion from BSTs, TBSTs, and RTBSTs. In
fact, we implemented two algorithms for RTBSTs. Each of these four algorithms has slightly
different performance characteristics. The following table summarizes the behavior of all of
the cases in these algorithms. Each cell describes the actions that take place: “link” is the
number of link fields set, “tag” the number of tag fields set, and “succ/pred” the number
of general successor or predecessors found during the case.

BST* TBST Right-Looking
TBST

Left-Looking
TBST

Case 1 1 link 2 links
1 succ/pred

2 links
1 succ/pred

1 link

Case 2 1 link 1 link
1 tag

1 link
1 tag

1 link
1 tag

Case 3 2 links 3 links
1 tag
1 succ/pred

3 links

1 succ/pred

2 links
1 tag

Case 4
subcase 1

4 links

1 succ/pred

5 links
2 tags
2 succ/pred

5 links
1 tag
2 succ/pred

4 links
1 tag
1 succ/pred

Case 4
subcase 2

4 links

1 succ/pred

5 links
2 tags
2 succ/pred

5 links
1 tag
2 succ/pred

4 links
1 tag
1 succ/pred

* Listed cases 1 and 2 both correspond to BST deletion case 1, and listed cases 3 and 4 to

BST deletion cases 2 and 3, respectively. BST deletion does not have any subcases in its case

3 (listed case 4), so it also saves a test to distinguish subcases.

As you can see, the penalty for left-looking deletion from a RTBST, compared to a plain
BST, is at most one tag assignment in any given case, except for the need to distinguish

236 GNU libavl 2.0.1

subcases of case 4. In this sense at least, left-looking deletion from an RTBST is considerably
faster than deletion from a TBST or right-looking deletion from a RTBST. This means that
it can indeed be worthwhile to implement right-threaded trees instead of BSTs or TBSTs.

10.6 Traversal

Traversal in an RTBST is unusual due to its asymmetry. Moving from smaller nodes to
larger nodes is easy: we do it with the same algorithm used in a TBST. Moving the other
way is more difficult and inefficient besides: we have neither a stack of parent nodes to fall
back on nor left threads to short-circuit.

RTBSTs use the same traversal structure as TBSTs, so we can reuse some of the functions
from TBST traversers. We also get a few directly from the implementations for BSTs. Other
than that, everything has to be written anew here:

§395 〈RTBST traversal functions 395 〉 ≡
〈TBST traverser null initializer; tbst ⇒ rtbst 269 〉
〈RTBST traverser first initializer 396 〉
〈RTBST traverser last initializer 397 〉
〈RTBST traverser search initializer 398 〉
〈TBST traverser insertion initializer; tbst ⇒ rtbst 273 〉
〈TBST traverser copy initializer; tbst ⇒ rtbst 274 〉
〈RTBST traverser advance function 399 〉
〈RTBST traverser back up function 400 〉
〈BST traverser current item function; bst ⇒ rtbst 74 〉
〈BST traverser replacement function; bst ⇒ rtbst 75 〉
This code is included in §375, §418, and §455.

10.6.1 Starting at the First Node

To find the first (least) item in the tree, we just descend all the way to the left, as usual.
In an RTBST, as in a BST, this involves checking for null pointers.

§396 〈RTBST traverser first initializer 396 〉 ≡
void ∗rtbst t first (struct rtbst traverser ∗trav , struct rtbst table ∗tree) {

assert (tree != NULL && trav != NULL);

trav→rtbst table = tree;
trav→rtbst node = tree→rtbst root ;
if (trav→rtbst node != NULL) {

while (trav→rtbst node→rtbst link [0] != NULL)
trav→rtbst node = trav→rtbst node→rtbst link [0];

return trav→rtbst node→rtbst data;
}
else return NULL;

}
This code is included in §395.

Chapter 10: Right-Threaded Binary Search Trees 237

10.6.2 Starting at the Last Node

To start at the last (greatest) item in the tree, we descend all the way to the right. In
an RTBST, as in a TBST, this involves checking for thread links.

§397 〈RTBST traverser last initializer 397 〉 ≡
void ∗rtbst t last (struct rtbst traverser ∗trav , struct rtbst table ∗tree) {

assert (tree != NULL && trav != NULL);
trav→rtbst table = tree;
trav→rtbst node = tree→rtbst root ;
if (trav→rtbst node != NULL) {

while (trav→rtbst node→rtbst rtag == RTBST_CHILD)
trav→rtbst node = trav→rtbst node→rtbst link [1];

return trav→rtbst node→rtbst data;
}
else return NULL;

}
This code is included in §395.

10.6.3 Starting at a Found Node

To start from an item found in the tree, we use the same algorithm as rtbst find().
§398 〈RTBST traverser search initializer 398 〉 ≡

void ∗rtbst t find (struct rtbst traverser ∗trav , struct rtbst table ∗tree, void ∗item) {
struct rtbst node ∗p;
assert (trav != NULL && tree != NULL && item != NULL);
trav→rtbst table = tree;
trav→rtbst node = NULL;
p = tree→rtbst root ;
if (p == NULL)

return NULL;
for (;;) {

int cmp = tree→rtbst compare (item, p→rtbst data, tree→rtbst param);
if (cmp == 0) {

trav→rtbst node = p;
return p→rtbst data;

}
if (cmp < 0) {

p = p→rtbst link [0];
if (p == NULL)

return NULL;
} else {

if (p→rtbst rtag == RTBST_THREAD)
return NULL;

p = p→rtbst link [1];
}

238 GNU libavl 2.0.1

}
}
This code is included in §395.

10.6.4 Advancing to the Next Node

We use the same algorithm to advance an RTBST traverser as for TBST traversers. The
only important difference between this code and 〈TBST traverser advance function 275 〉 is
the substitution of rtbst rtag for tbst tag [1].

§399 〈RTBST traverser advance function 399 〉 ≡
void ∗rtbst t next (struct rtbst traverser ∗trav) {

assert (trav != NULL);
if (trav→rtbst node == NULL)

return rtbst t first (trav , trav→rtbst table);
else if (trav→rtbst node→rtbst rtag == RTBST_THREAD) {

trav→rtbst node = trav→rtbst node→rtbst link [1];
return trav→rtbst node != NULL ? trav→rtbst node→rtbst data : NULL;

} else {
trav→rtbst node = trav→rtbst node→rtbst link [1];
while (trav→rtbst node→rtbst link [0] != NULL)

trav→rtbst node = trav→rtbst node→rtbst link [0];
return trav→rtbst node→rtbst data;

}
}
This code is included in §395.

10.6.5 Backing Up to the Previous Node

Moving an RTBST traverser backward has the same cases as in the other ways of finding
an inorder predecessor that we’ve already discussed. The two main cases are distinguished
on whether the current item has a left child; the third case comes up when there is no
current item, implemented simply by delegation to rtbst t last():

§400 〈RTBST traverser back up function 400 〉 ≡
void ∗rtbst t prev (struct rtbst traverser ∗trav) {

assert (trav != NULL);
if (trav→rtbst node == NULL)

return rtbst t last (trav , trav→rtbst table);
else if (trav→rtbst node→rtbst link [0] == NULL) {

〈Find predecessor of RTBST node with no left child 401 〉
} else {

〈Find predecessor of RTBST node with left child 402 〉
}

}
This code is included in §395.

The novel case is where the node p whose predecessor we want has no left child. In this
case, we use a modified version of the algorithm originally specified for finding a node’s

Chapter 10: Right-Threaded Binary Search Trees 239

successor in an unthreaded tree (see Section 4.9.3 [Better Iterative Traversal], page 53).
We take the idea of moving up until we’ve moved up to the left, and turn it upside down
(to avoid need for a parent stack) and reverse it (to find the predecessor instead of the
successor).

The idea here is to trace p’s entire direct ancestral line. Starting from the root of the
tree, we repeatedly compare each node’s data with p’s and use the result to move downward,
until we encounter node p itself. Each time we move down from a node x to its right child,
we record x as the potential predecessor of p. When we finally arrive at p, the last node
so selected is the actual predecessor, or if none was selected then p is the least node in the
tree and we select the null item as its predecessor.

Consider this algorithm in the context of the tree shown here:

0

1

2

3

4

5

6

7

8

9

To find the predecessor of node 8, we trace the path from the root down to it: 3-9-5-7-8.
The last time we move down to the right is from 7 to 8, so 7 is node 8’s predecessor. To find
the predecessor of node 6, we trace the path 3-9-5-7-6 and notice that we last move down
to the right from 5 to 7, so 5 is node 6’s predecessor. Finally, node 0 has the null item as
its predecessor because path 3-1-0 does not involve any rightward movement.

Here is the code to implement this case:
§401 〈Find predecessor of RTBST node with no left child 401 〉 ≡

rtbst comparison func ∗cmp = trav→rtbst table→rtbst compare;
void ∗param = trav→rtbst table→rtbst param;
struct rtbst node ∗node = trav→rtbst node;
struct rtbst node ∗i ;
trav→rtbst node = NULL;
for (i = trav→rtbst table→rtbst root ; i != node;) {

int dir = cmp (node→rtbst data, i→rtbst data, param) > 0;
if (dir == 1)

trav→rtbst node = i ;
i = i→rtbst link [dir];

}
return trav→rtbst node != NULL ? trav→rtbst node→rtbst data : NULL;
This code is included in §400.

The other case, where the node whose predecessor we want has a left child, is nothing
new. We just find the largest node in the node’s left subtree:

§402 〈Find predecessor of RTBST node with left child 402 〉 ≡
trav→rtbst node = trav→rtbst node→rtbst link [0];
while (trav→rtbst node→rtbst rtag == RTBST_CHILD)

240 GNU libavl 2.0.1

trav→rtbst node = trav→rtbst node→rtbst link [1];
return trav→rtbst node→rtbst data;
This code is included in §400.

10.7 Copying

The algorithm that we used for copying a TBST makes use of threads, but only right
threads, so we can apply this algorithm essentially unmodified to RTBSTs.

We will make one change that superficially simplifies and improves the elegance of the
algorithm. Function tbst copy() in 〈TBST main copy function 279 〉 uses a pair of local
variables rp and rq to store pointers to the original and new tree’s root, because accessing
the tag field of a cast “pseudo-root” pointer produces undefined behavior. However, in an
RTBST there is no tag for a node’s left subtree. During a TBST copy, only the left tags of
the root nodes are accessed, so this means that we can use the pseudo-roots in the RTBST
copy, with no need for rp or rq .

§403 〈RTBST main copy function 403 〉 ≡
struct rtbst table ∗rtbst copy (const struct rtbst table ∗org , rtbst copy func ∗copy ,

rtbst item func ∗destroy , struct libavl allocator ∗allocator)
{

struct rtbst table ∗new ;
const struct rtbst node ∗p;
struct rtbst node ∗q ;
assert (org != NULL);
new = rtbst create (org→rtbst compare, org→rtbst param,

allocator != NULL ? allocator : org→rtbst alloc);
if (new == NULL)

return NULL;
new→rtbst count = org→rtbst count ;
if (new→rtbst count == 0)

return new ;
p = (struct rtbst node ∗) &org→rtbst root ;
q = (struct rtbst node ∗) &new→rtbst root ;
for (;;) {

if (p→rtbst link [0] != NULL) {
if (!copy node (new , q , 0, p→rtbst link [0], copy)) {

copy error recovery (new , destroy);
return NULL;

}
p = p→rtbst link [0];
q = q→rtbst link [0];

} else {
while (p→rtbst rtag == RTBST_THREAD) {

p = p→rtbst link [1];
if (p == NULL) {

q→rtbst link [1] = NULL;

Chapter 10: Right-Threaded Binary Search Trees 241

return new ;
}
q = q→rtbst link [1];

}
p = p→rtbst link [1];
q = q→rtbst link [1];

}
if (p→rtbst rtag == RTBST_CHILD)

if (!copy node (new , q , 1, p→rtbst link [1], copy)) {
copy error recovery (new , destroy);
return NULL;

}
}

}
This code is included in §406 and §447.

The code to copy a node must be modified to deal with the asymmetrical nature of
insertion in an RTBST:

§404 〈RTBST node copy function 404 〉 ≡
static int copy node (struct rtbst table ∗tree, struct rtbst node ∗dst , int dir ,

const struct rtbst node ∗src, rtbst copy func ∗copy) {
struct rtbst node ∗new = tree→rtbst alloc→libavl malloc (tree→rtbst alloc, sizeof ∗new);
if (new == NULL)

return 0;
new→rtbst link [0] = NULL;
new→rtbst rtag = RTBST_THREAD;
if (dir == 0)

new→rtbst link [1] = dst ;
else {

new→rtbst link [1] = dst→rtbst link [1];
dst→rtbst rtag = RTBST_CHILD;

}
dst→rtbst link [dir] = new ;
if (copy == NULL)

new→rtbst data = src→rtbst data;
else {

new→rtbst data = copy (src→rtbst data, tree→rtbst param);
if (new→rtbst data == NULL)

return 0;
}
return 1;

}
This code is included in §406.

The error recovery function for copying is a bit simpler now, because the use of the
pseudo-root means that no assignment to the new tree’s root need take place, eliminating
the need for one of the function’s parameters:

242 GNU libavl 2.0.1

§405 〈RTBST copy error helper function 405 〉 ≡
static void copy error recovery (struct rtbst table ∗new , rtbst item func ∗destroy) {

struct rtbst node ∗p = new→rtbst root ;
if (p != NULL) {

while (p→rtbst rtag == RTBST_CHILD)
p = p→rtbst link [1];

p→rtbst link [1] = NULL;
}
rtbst destroy (new , destroy);

}
This code is included in §406 and §447.

§406 〈RTBST copy function 406 〉 ≡
〈RTBST node copy function 404 〉
〈RTBST copy error helper function 405 〉
〈RTBST main copy function 403 〉
This code is included in §375.

10.8 Destruction

The destruction algorithm for TBSTs makes use only of right threads, so we can easily
adapt it for RTBSTs.

§407 〈RTBST destruction function 407 〉 ≡
void rtbst destroy (struct rtbst table ∗tree, rtbst item func ∗destroy) {

struct rtbst node ∗p; /∗ Current node. ∗/
struct rtbst node ∗n; /∗ Next node. ∗/
p = tree→rtbst root ;
if (p != NULL)

while (p→rtbst link [0] != NULL)
p = p→rtbst link [0];

while (p != NULL) {
n = p→rtbst link [1];
if (p→rtbst rtag == RTBST_CHILD)

while (n→rtbst link [0] != NULL)
n = n→rtbst link [0];

if (destroy != NULL && p→rtbst data != NULL)
destroy (p→rtbst data, tree→rtbst param);

tree→rtbst alloc→libavl free (tree→rtbst alloc, p);

p = n;
}
tree→rtbst alloc→libavl free (tree→rtbst alloc, tree);

}
This code is included in §375, §418, and §455.

Chapter 10: Right-Threaded Binary Search Trees 243

10.9 Balance

As for so many other operations, we can reuse most of the TBST balancing code to
rebalance RTBSTs. Some of the helper functions can be completely recycled:

§408 〈RTBST balance function 408 〉 ≡
〈RTBST tree-to-vine function 409 〉
〈RTBST vine compression function 410 〉
〈TBST vine-to-tree function; tbst ⇒ rtbst 285 〉
〈TBST main balance function; tbst ⇒ rtbst 283 〉
This code is included in §375.

The only substantative difference for the remaining two functions is that there is no need
to set nodes’ left tags (since they don’t have any):

§409 〈RTBST tree-to-vine function 409 〉 ≡
static void tree to vine (struct rtbst table ∗tree) {

struct rtbst node ∗p;
if (tree→rtbst root == NULL)

return;
p = tree→rtbst root ;
while (p→rtbst link [0] != NULL)

p = p→rtbst link [0];
for (;;) {

struct rtbst node ∗q = p→rtbst link [1];
if (p→rtbst rtag == RTBST_CHILD) {

while (q→rtbst link [0] != NULL)
q = q→rtbst link [0];

p→rtbst rtag = RTBST_THREAD;
p→rtbst link [1] = q ;

}
if (q == NULL)

break;
q→rtbst link [0] = p;
p = q ;

}
tree→rtbst root = p;

}
This code is included in §408.

§410 〈RTBST vine compression function 410 〉 ≡
/∗ Performs a compression transformation count times, starting at root . ∗/
static void compress (struct rtbst node ∗root ,

unsigned long nonthread , unsigned long thread) {
assert (root != NULL);
while (nonthread−−) {

struct rtbst node ∗red = root→rtbst link [0];
struct rtbst node ∗black = red→rtbst link [0];

244 GNU libavl 2.0.1

root→rtbst link [0] = black ;
red→rtbst link [0] = black→rtbst link [1];
black→rtbst link [1] = red ;
root = black ;

}
while (thread−−) {

struct rtbst node ∗red = root→rtbst link [0];
struct rtbst node ∗black = red→rtbst link [0];
root→rtbst link [0] = black ;
red→rtbst link [0] = NULL;
black→rtbst rtag = RTBST_CHILD;
root = black ;

}
}
This code is included in §408.

10.10 Testing

There’s nothing new or interesting in the test code.
§411 〈 rtbst-test.c 411 〉 ≡

〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “rtbst.h”
#include “test.h”
〈RTBST print function 412 〉
〈BST traverser check function; bst ⇒ rtbst 104 〉
〈Compare two RTBSTs for structure and content 413 〉
〈Recursively verify RTBST structure 414 〉
〈BST verify function; bst ⇒ rtbst 109 〉
〈TBST test function; tbst ⇒ rtbst 295 〉
〈BST overflow test function; bst ⇒ rtbst 122 〉

§412 〈RTBST print function 412 〉 ≡
void print tree structure (struct rtbst node ∗node, int level) {

if (level > 16) {
printf ("[...]");
return;

}
if (node == NULL) {

printf ("<nil>");
return;

}
printf ("%d(", node→rtbst data ? ∗(int ∗) node→rtbst data : −1);
if (node→rtbst link [0] != NULL)

Chapter 10: Right-Threaded Binary Search Trees 245

print tree structure (node→rtbst link [0], level + 1);
fputs (",Ã", stdout);
if (node→rtbst rtag == RTBST_CHILD) {

if (node→rtbst link [1] == node)
printf ("loop");

else print tree structure (node→rtbst link [1], level + 1);
}
else if (node→rtbst link [1] != NULL) printf (">%d", (node→rtbst link [1]→rtbst data

? ∗(int ∗) node→rtbst link [1]→rtbst data : −1));
else printf (">>");
putchar (’)’);

}
void print whole tree (const struct rtbst table ∗tree, const char ∗title) {

printf ("%s:Ã", title);
print tree structure (tree→rtbst root , 0);
putchar (’\n’);

}
This code is included in §411, §449, and §482.

§413 〈Compare two RTBSTs for structure and content 413 〉 ≡
static int compare trees (struct rtbst node ∗a, struct rtbst node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

if (a != NULL || b != NULL) {
printf ("Ãa=%dÃb=%d\n",

a ? ∗(int ∗) a→rtbst data : −1,
b ? ∗(int ∗) b→rtbst data : −1);

assert (0);
}
return 1;

}
assert (a != b);
if (∗(int ∗) a→rtbst data != ∗(int ∗) b→rtbst data
|| a→rtbst rtag != b→rtbst rtag) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%dÃb=%dÃa:",

∗(int ∗) a→rtbst data, ∗(int ∗) b→rtbst data);
if (a→rtbst rtag == RTBST_CHILD) printf ("r");
printf ("Ãb:");
if (b→rtbst rtag == RTBST_CHILD) printf ("r");
printf ("\n");
return 0;

}
if (a→rtbst rtag == RTBST_THREAD)

assert ((a→rtbst link [1] == NULL)
!= (a→rtbst link [1] != b→rtbst link [1]));

246 GNU libavl 2.0.1

okay = compare trees (a→rtbst link [0], b→rtbst link [0]);
if (a→rtbst rtag == RTBST_CHILD)

okay &= compare trees (a→rtbst link [1], b→rtbst link [1]);
return okay ;

}
This code is included in §411.

§414 〈Recursively verify RTBST structure 414 〉 ≡
static void recurse verify tree (struct rtbst node ∗node, int ∗okay , size t ∗count ,

int min, int max) {
int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
if (node == NULL) {

∗count = 0;
return;

}
d = ∗(int ∗) node→rtbst data;
〈Verify binary search tree ordering 114 〉
subcount [0] = subcount [1] = 0;
recurse verify tree (node→rtbst link [0], okay , &subcount [0], min, d − 1);
if (node→rtbst rtag == RTBST_CHILD)

recurse verify tree (node→rtbst link [1], okay , &subcount [1], d + 1, max);
∗count = 1 + subcount [0] + subcount [1];

}
This code is included in §411.

Chapter 11: Right-Threaded AVL Trees 247

11 Right-Threaded AVL Trees

In the same way that we can combine threaded trees with AVL trees to produce threaded
AVL trees, we can combine right-threaded trees with AVL trees to produce right-threaded
AVL trees. This chapter explores this combination, producing another table implementa-
tion.

Here’s the form of the source and header files. Notice the use of rtavl as the identifier
prefix. Likewise, we will often refer to right-threaded AVL trees as “RTAVL trees”.

§415 〈 rtavl.h 415 〉 ≡
〈License 1 〉
#ifndef RTAVL_H
#define RTAVL_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ rtavl 14 〉
〈BST maximum height; bst ⇒ rtavl 28 〉
〈TBST table structure; tbst ⇒ rtavl 250 〉
〈RTAVL node structure 417 〉
〈TBST traverser structure; tbst ⇒ rtavl 267 〉
〈Table function prototypes; tbl ⇒ rtavl 15 〉
#endif /∗ rtavl.h ∗/

§416 〈 rtavl.c 416 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “rtavl.h”
〈RTAVL functions 418 〉

11.1 Data Types

Besides the members needed for any BST, an RTAVL node structure needs a tag to
indicate whether the right link is a child pointer or a thread, and a balance factor to
facilitate AVL balancing. Here’s what we end up with:

§417 〈RTAVL node structure 417 〉 ≡
/∗ Characterizes a link as a child pointer or a thread. ∗/
enum rtavl tag {

RTAVL_CHILD, /∗ Child pointer. ∗/
RTAVL_THREAD /∗ Thread. ∗/

};
/∗ A threaded binary search tree node. ∗/
struct rtavl node {

struct rtavl node ∗rtavl link [2]; /∗ Subtrees. ∗/
void ∗rtavl data; /∗ Pointer to data. ∗/
unsigned char rtavl rtag ; /∗ Tag field. ∗/
signed char rtavl balance; /∗ Balance factor. ∗/

248 GNU libavl 2.0.1

};
This code is included in §415.

11.2 Operations

Most of the operations for RTAVL trees can come directly from their RTBST implemen-
tations. The notable exceptions are, as usual, the insertion and deletion functions. The
copy function will also need a small tweak. Here’s the list of operations:

§418 〈RTAVL functions 418 〉 ≡
〈TBST creation function; tbst ⇒ rtavl 252 〉
〈RTBST search function; rtbst ⇒ rtavl 376 〉
〈RTAVL item insertion function 419 〉
〈Table insertion convenience functions; tbl ⇒ rtavl 592 〉
〈RTAVL item deletion function 429 〉
〈RTBST traversal functions; rtbst ⇒ rtavl 395 〉
〈RTAVL copy function 447 〉
〈RTBST destruction function; rtbst ⇒ rtavl 407 〉
〈Default memory allocation functions; tbl ⇒ rtavl 6 〉
〈Table assertion functions; tbl ⇒ rtavl 594 〉
This code is included in §416.

11.3 Rotations

We will use rotations in right-threaded trees in the same way as for other kinds of trees
that we have already examined. As always, a generic rotation looks like this:

a

X

b

Y

c ⇔ a

X

b

Y

c

On the left side of this diagram, a may be an empty subtree and b and c may be threads.
On the right side, a and b may be empty subtrees and c may be a thread. If none of them
in fact represent actual nodes, then we end up with the following pathological case:

X

Y
⇔

X

Y

Notice the asymmetry here: in a right rotation the right thread from X to Y becomes
a null left child of Y , but in a left rotation this is reversed and a null subtree b becomes a
right thread from X to Y . Contrast this to the correponding rotation in a threaded tree
(see Section 8.2 [TBST Rotations], page 192), where either way the same kind of change
occurs: the thread from X to Y , or vice versa, simply reverses direction.

As with other kinds of rotations we’ve seen, there is no need to make any changes in
subtrees of a, b, or c, because of rotations’ locality and order-preserving properties (see

Chapter 11: Right-Threaded AVL Trees 249

Section 4.3 [BST Rotations], page 33). In particular, nodes a and c, if they exist, need no
adjustments, as implied by the diagram above, which shows no changes to these subtrees
on opposite sides.

Exercises:

1. Write functions for right and left rotations in right-threaded BSTs, analogous to those
for unthreaded BSTs developed in Exercise 4.3-2.

11.4 Insertion

Insertion into an RTAVL tree follows the same pattern as insertion into other kinds of
balanced tree. The outline is straightforward:

§419 〈RTAVL item insertion function 419 〉 ≡
void ∗∗rtavl probe (struct rtavl table ∗tree, void ∗item) {

〈 avl probe() local variables; avl ⇒ rtavl 147 〉
assert (tree != NULL && item != NULL);
〈Step 1: Search RTAVL tree for insertion point 420 〉
〈Step 2: Insert RTAVL node 421 〉
〈Step 3: Update balance factors after AVL insertion; avl ⇒ rtavl 150 〉
〈Step 4: Rebalance after RTAVL insertion 422 〉

}
This code is included in §418.

11.4.1 Steps 1–2: Search and Insert

The basic insertion step itself follows the same steps as 〈RTBST item insertion function
377 〉 does for a plain RTBST. We do keep track of the directions moved on stack da[] and
the last-seen node with nonzero balance factor, in the same way as 〈Step 1: Search AVL
tree for insertion point 148 〉 for unthreaded AVL trees.

§420 〈Step 1: Search RTAVL tree for insertion point 420 〉 ≡
z = (struct rtavl node ∗) &tree→rtavl root ;
y = tree→rtavl root ;
if (tree→rtavl root != NULL)

for (q = z , p = y ; ; q = p, p = p→rtavl link [dir]) {
int cmp = tree→rtavl compare (item, p→rtavl data, tree→rtavl param);
if (cmp == 0)

return &p→rtavl data;
if (p→rtavl balance != 0)

z = q , y = p, k = 0;
da[k++] = dir = cmp > 0;
if (dir == 0) {

if (p→rtavl link [0] == NULL)
break;

} else /∗ dir == 1 ∗/ {
if (p→rtavl rtag == RTAVL_THREAD)

break;

250 GNU libavl 2.0.1

}
}

else {
p = (struct rtavl node ∗) &tree→rtavl root ;
dir = 0;

}
This code is included in §419.

§421 〈Step 2: Insert RTAVL node 421 〉 ≡
n = tree→rtavl alloc→libavl malloc (tree→rtavl alloc, sizeof ∗n);
if (n == NULL)

return NULL;
tree→rtavl count++;
n→rtavl data = item;
n→rtavl link [0] = NULL;
if (dir == 0)

n→rtavl link [1] = p;
else /∗ dir == 1 ∗/ {

p→rtavl rtag = RTAVL_CHILD;
n→rtavl link [1] = p→rtavl link [1];

}
n→rtavl rtag = RTAVL_THREAD;
n→rtavl balance = 0;
p→rtavl link [dir] = n;
if (y == NULL) {

n→rtavl link [1] = NULL;
return &n→rtavl data;

}
This code is included in §419.

11.4.2 Step 4: Rebalance

Unlike all of the AVL rebalancing algorithms we’ve seen so far, rebalancing of a right-
threaded AVL tree is not symmetric. This means that we cannot single out left-side rebal-
ancing or right-side rebalancing as we did before, hand-waving the rest of it as a symmetric
case. But both cases are very similar, if not exactly symmetric, so we will present the
corresponding cases together. The theory is exactly the same as before (see Section 5.4.4
[Rebalancing AVL Trees], page 115). Here is the code to choose between left-side and
right-side rebalancing:

§422 〈Step 4: Rebalance after RTAVL insertion 422 〉 ≡
if (y→rtavl balance == −2)

{ 〈Step 4: Rebalance RTAVL tree after insertion to left 423 〉 }
else if (y→rtavl balance == +2)

{ 〈Step 4: Rebalance RTAVL tree after insertion to right 424 〉 }
else return &n→rtavl data;
z→rtavl link [y != z→rtavl link [0]] = w ;
return &n→rtavl data;

Chapter 11: Right-Threaded AVL Trees 251

This code is included in §419.

The code to choose between the two subcases within the left-side and right-side rebal-
ancing cases follows below. As usual during rebalancing, y is the node at which rebalancing
occurs, x is its child on the same side as the inserted node, and cases are distinguished on
the basis of x ’s balance factor:

§423 〈Step 4: Rebalance RTAVL tree after insertion to left 423 〉 ≡
struct rtavl node ∗x = y→rtavl link [0];
if (x→rtavl balance == −1)

{ 〈Rebalance for − balance factor in RTAVL insertion in left subtree 425 〉 }
else { 〈Rebalance for + balance factor in RTAVL insertion in left subtree 427 〉 }
This code is included in §422.

§424 〈Step 4: Rebalance RTAVL tree after insertion to right 424 〉 ≡
struct rtavl node ∗x = y→rtavl link [1];
if (x→rtavl balance == +1)

{ 〈Rebalance for + balance factor in RTAVL insertion in right subtree 426 〉 }
else { 〈Rebalance for − balance factor in RTAVL insertion in right subtree 428 〉 }
This code is included in §422.

Case 1: x has taller subtree on side of insertion

If node x ’s taller subtree is on the same side as the inserted node, then we perform a
rotation at y in the opposite direction. That is, if the insertion occurred in the left subtree
of y and x has a − balance factor, we rotate right at y , and if the insertion was to the right
and x has a + balance factor, we rotate left at y . This changes the balance of both x and
y to zero. None of this is a change from unthreaded or fully threaded rebalancing. The
difference is in the handling of empty subtrees, that is, in the rotation itself (see Section 11.3
[RTBST Rotations], page 248).

Here is a diagram of left-side rebalancing for the interesting case where x has a right
thread. Taken along with x ’s − balance factor, this means that n, the newly inserted node,
must be x ’s left child. Therefore, subtree x has height 2, so y has no right child (because
it has a −2 balance factor). This chain of logic means that we know exactly what the tree
looks like in this particular subcase:

0n

-x

--y

⇒
0n

0 x

0 y

§425 〈Rebalance for − balance factor in RTAVL insertion in left subtree 425 〉 ≡
w = x ;
if (x→rtavl rtag == RTAVL_THREAD) {

x→rtavl rtag = RTAVL_CHILD;
y→rtavl link [0] = NULL;

}
else y→rtavl link [0] = x→rtavl link [1];
x→rtavl link [1] = y ;

252 GNU libavl 2.0.1

x→rtavl balance = y→rtavl balance = 0;
This code is included in §423.

Here is the diagram and code for the similar right-side case:

++ y

+ x

0 n

⇒
0y

0 x

0 n

§426 〈Rebalance for + balance factor in RTAVL insertion in right subtree 426 〉 ≡
w = x ;
if (x→rtavl link [0] == NULL) {

y→rtavl rtag = RTAVL_THREAD;
y→rtavl link [1] = x ;

}
else y→rtavl link [1] = x→rtavl link [0];
x→rtavl link [0] = y ;
x→rtavl balance = y→rtavl balance = 0;
This code is included in §424.

Case 2: x has taller subtree on side opposite insertion

If node x ’s taller subtree is on the side opposite the newly inserted node, then we perform
a double rotation: first rotate at x in the same direction as the inserted node, then in the
opposite direction at y . This is the same as in a threaded or unthreaded tree, and indeed
we can reuse much of the code.

The case where the details differ is, as usual, where threads or null child pointers are
moved around. In the most extreme case for insertion to the left, where w is a leaf, we
know that x has no left child and s no right child, and the situation looks like the diagram
below before and after the rebalancing step:

+x

0 w

--y

⇒
0x

0 w

0 y

§427 〈Rebalance for + balance factor in RTAVL insertion in left subtree 427 〉 ≡
〈Rotate left at x then right at y in AVL tree; avl ⇒ rtavl 156 〉
if (x→rtavl link [1] == NULL) {

x→rtavl rtag = RTAVL_THREAD;
x→rtavl link [1] = w ;

}
if (w→rtavl rtag == RTAVL_THREAD) {

y→rtavl link [0] = NULL;
w→rtavl rtag = RTAVL_CHILD;

}

Chapter 11: Right-Threaded AVL Trees 253

This code is included in §423 and §442.

Here is the code and diagram for right-side insertion rebalancing:

++ y

0w

- x ⇒
0y

0 w

0 x

§428 〈Rebalance for − balance factor in RTAVL insertion in right subtree 428 〉 ≡
〈Rotate right at x then left at y in AVL tree; avl ⇒ rtavl 159 〉
if (y→rtavl link [1] == NULL) {

y→rtavl rtag = RTAVL_THREAD;
y→rtavl link [1] = w ;

}
if (w→rtavl rtag == RTAVL_THREAD) {

x→rtavl link [0] = NULL;
w→rtavl rtag = RTAVL_CHILD;

}
This code is included in §424 and §441.

11.5 Deletion

Deletion in an RTAVL tree takes the usual pattern.
§429 〈RTAVL item deletion function 429 〉 ≡

void ∗rtavl delete (struct rtavl table ∗tree, const void ∗item) {
/∗ Stack of nodes. ∗/
struct rtavl node ∗pa[RTAVL_MAX_HEIGHT]; /∗ Nodes. ∗/
unsigned char da[RTAVL_MAX_HEIGHT]; /∗ rtavl link [] indexes. ∗/
int k ; /∗ Stack pointer. ∗/
struct rtavl node ∗p; /∗ Traverses tree to find node to delete. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search RTAVL tree for item to delete 430 〉
〈Step 2: Delete RTAVL node 431 〉
〈Steps 3 and 4: Update balance factors and rebalance after RTAVL deletion 438 〉
return (void ∗) item;

}
This code is included in §418.

11.5.1 Step 1: Search

There’s nothing new in searching an RTAVL tree for a node to delete. We use p to
search the tree, and push its chain of parent nodes onto stack pa[] along with the directions
da[] moved down from them, including the pseudo-root node at the top.

§430 〈Step 1: Search RTAVL tree for item to delete 430 〉 ≡

254 GNU libavl 2.0.1

k = 1;
da[0] = 0;
pa[0] = (struct rtavl node ∗) &tree→rtavl root ;
p = tree→rtavl root ;
if (p == NULL)

return NULL;
for (;;) {

int cmp, dir ;
cmp = tree→rtavl compare (item, p→rtavl data, tree→rtavl param);
if (cmp == 0)

break;
dir = cmp > 0;
if (dir == 0) {

if (p→rtavl link [0] == NULL)
return NULL;

} else /∗ dir == 1 ∗/ {
if (p→rtavl rtag == RTAVL_THREAD)

return NULL;
}
pa[k] = p;
da[k++] = dir ;
p = p→rtavl link [dir];

}
tree→rtavl count−−;
item = p→rtavl data;
This code is included in §429 and §468.

11.5.2 Step 2: Delete

As demonstrated in the previous chapter, left-looking deletion, where we examine the
left subtree of the node to be deleted, is more efficient than right-looking deletion in an
RTBST (see Section 10.5.2 [Left-Looking Deletion in an RTBST], page 232). This holds
true in an RTAVL tree, too.

§431 〈Step 2: Delete RTAVL node 431 〉 ≡
if (p→rtavl link [0] == NULL) {

if (p→rtavl rtag == RTAVL_CHILD)
{ 〈Case 1 in RTAVL deletion 432 〉 }

else { 〈Case 2 in RTAVL deletion 433 〉 }
} else {

struct rtavl node ∗r = p→rtavl link [0];
if (r→rtavl rtag == RTAVL_THREAD)

{ 〈Case 3 in RTAVL deletion 434 〉 }
else { 〈Case 4 in RTAVL deletion 435 〉 }

}
tree→rtavl alloc→libavl free (tree→rtavl alloc, p);
This code is included in §429.

Chapter 11: Right-Threaded AVL Trees 255

Case 1: p has a right child but no left child

If the node to be deleted, p, has a right child but not a left child, then we replace it by
its right child.

§432 〈Case 1 in RTAVL deletion 432 〉 ≡
pa[k − 1]→rtavl link [da[k − 1]] = p→rtavl link [1];
This code is included in §431 and §470.

Case 2: p has a right thread and no left child

If we are deleting a leaf, then we replace it by a null pointer if it’s a left child, or by a
pointer to its own former right thread if it’s a right child. Refer back to the commentary
on 〈Case 2 in right-looking RTBST deletion 385 〉 for further explanation.

§433 〈Case 2 in RTAVL deletion 433 〉 ≡
pa[k − 1]→rtavl link [da[k − 1]] = p→rtavl link [da[k − 1]];
if (da[k − 1] == 1)

pa[k − 1]→rtavl rtag = RTAVL_THREAD;
This code is included in §431 and §471.

Case 3: p’s left child has a right thread

If p has a left child r , and r has a right thread, then we replace p by r and transfer p’s
former right link to r . Node r also receives p’s balance factor.

§434 〈Case 3 in RTAVL deletion 434 〉 ≡
r→rtavl link [1] = p→rtavl link [1];
r→rtavl rtag = p→rtavl rtag ;
r→rtavl balance = p→rtavl balance;
pa[k − 1]→rtavl link [da[k − 1]] = r ;
da[k] = 0;
pa[k++] = r ;
This code is included in §431.

Case 4: p’s left child has a right child

The final case, where node p’s left child r has a right child, is also the most complicated.
We find p’s predecessor s first:

§435 〈Case 4 in RTAVL deletion 435 〉 ≡
struct rtavl node ∗s;
int j = k++;
for (;;) {

da[k] = 1;
pa[k++] = r ;
s = r→rtavl link [1];
if (s→rtavl rtag == RTAVL_THREAD)

break;
r = s;

256 GNU libavl 2.0.1

}
See also §436 and §437.

This code is included in §431.

Then we move s into p’s place, not forgetting to update links and tags as necessary:
§436 〈Case 4 in RTAVL deletion 435 〉 +≡

da[j] = 0;
pa[j] = pa[j − 1]→rtavl link [da[j − 1]] = s;
if (s→rtavl link [0] != NULL)

r→rtavl link [1] = s→rtavl link [0];
else {

r→rtavl rtag = RTAVL_THREAD;
r→rtavl link [1] = s;

}
Finally, we copy p’s old information into s, except for the actual data:

§437 〈Case 4 in RTAVL deletion 435 〉 +≡
s→rtavl balance = p→rtavl balance;
s→rtavl link [0] = p→rtavl link [0];
s→rtavl link [1] = p→rtavl link [1];
s→rtavl rtag = p→rtavl rtag ;

11.5.3 Step 3: Update Balance Factors

Updating balance factors works exactly the same way as in unthreaded AVL deletion
(see Section 5.5.3 [Deleting an AVL Node Step 3 - Update], page 125).

§438 〈Steps 3 and 4: Update balance factors and rebalance after RTAVL deletion 438 〉 ≡
assert (k > 0);
while (−−k > 0) {

struct rtavl node ∗y = pa[k];
if (da[k] == 0) {

y→rtavl balance++;
if (y→rtavl balance == +1)

break;
else if (y→rtavl balance == +2) {

〈Step 4: Rebalance after RTAVL deletion in left subtree 439 〉
}

} else {
y→rtavl balance−−;
if (y→rtavl balance == −1)

break;
else if (y→rtavl balance == −2) {

〈Step 4: Rebalance after RTAVL deletion in right subtree 440 〉
}

}
}
This code is included in §429.

Chapter 11: Right-Threaded AVL Trees 257

11.5.4 Step 4: Rebalance

Rebalancing in an RTAVL tree after deletion is not completely symmetric between left-
side and right-side rebalancing, but there are pairs of similar subcases on each side. The
outlines are similar, too. Either way, rebalancing occurs at node y , and cases are distin-
guished based on the balance factor of x , the child of y on the side opposite the deletion.

§439 〈Step 4: Rebalance after RTAVL deletion in left subtree 439 〉 ≡
struct rtavl node ∗x = y→rtavl link [1];
assert (x != NULL);
if (x→rtavl balance == −1) {

〈Rebalance for − balance factor after left-side RTAVL deletion 441 〉
} else {

pa[k − 1]→rtavl link [da[k − 1]] = x ;
if (x→rtavl balance == 0) {

〈Rebalance for 0 balance factor after left-side RTAVL deletion 443 〉
break;

}
else /∗ x→rtavl balance == +1 ∗/ {

〈Rebalance for + balance factor after left-side RTAVL deletion 445 〉
}

}
This code is included in §438.

§440 〈Step 4: Rebalance after RTAVL deletion in right subtree 440 〉 ≡
struct rtavl node ∗x = y→rtavl link [0];
assert (x != NULL);
if (x→rtavl balance == +1) {

〈Rebalance for + balance factor after right-side RTAVL deletion 442 〉
} else {

pa[k − 1]→rtavl link [da[k − 1]] = x ;
if (x→rtavl balance == 0) {

〈Rebalance for 0 balance factor after right-side RTAVL deletion 444 〉
break;

}
else /∗ x→rtavl balance == −1 ∗/ {

〈Rebalance for − balance factor after right-side RTAVL deletion 446 〉
}

}
This code is included in §438.

Case 1: x has taller subtree on same side as deletion

If the taller subtree of x is on the same side as the deletion, then we rotate at x in the
opposite direction from the deletion, then at y in the same direction as the deletion. This is
the same as case 2 for RTAVL insertion (see page 252), which in turn performs the general
transformation described for AVL deletion case 1 (see page 127), and we can reuse the code.

§441 〈Rebalance for − balance factor after left-side RTAVL deletion 441 〉 ≡

258 GNU libavl 2.0.1

struct rtavl node ∗w ;

〈Rebalance for − balance factor in RTAVL insertion in right subtree 428 〉
pa[k − 1]→rtavl link [da[k − 1]] = w ;

This code is included in §439.

§442 〈Rebalance for + balance factor after right-side RTAVL deletion 442 〉 ≡
struct rtavl node ∗w ;

〈Rebalance for + balance factor in RTAVL insertion in left subtree 427 〉
pa[k − 1]→rtavl link [da[k − 1]] = w ;

This code is included in §440.

Case 2: x ’s subtrees are equal height

If x ’s two subtrees are of equal height, then we perform a rotation at y toward the
deletion. This rotation cannot be troublesome, for the same reason discussed for rebalancing
in TAVL trees (see page 201). We can even reuse the code:

§443 〈Rebalance for 0 balance factor after left-side RTAVL deletion 443 〉 ≡
〈Rebalance for 0 balance factor after TAVL deletion in left subtree; tavl ⇒ rtavl 321 〉
This code is included in §439.

§444 〈Rebalance for 0 balance factor after right-side RTAVL deletion 444 〉 ≡
〈Rebalance for 0 balance factor after TAVL deletion in right subtree; tavl ⇒ rtavl 325 〉
This code is included in §440.

Case 3: x has taller subtree on side opposite deletion

When x ’s taller subtree is on the side opposite the deletion, we rotate at y toward the
deletion, same as case 2. If the deletion was on the left side of y , then the general form is
the same as for TAVL deletion (see page 201). The special case for left-side deletion, where
x lacks a left child, and the general form of the code, are shown here:

++y

+ x

0 c

⇒
0y

0x

0 c

§445 〈Rebalance for + balance factor after left-side RTAVL deletion 445 〉 ≡
if (x→rtavl link [0] != NULL)

y→rtavl link [1] = x→rtavl link [0];
else y→rtavl rtag = RTAVL_THREAD;
x→rtavl link [0] = y ;
y→rtavl balance = x→rtavl balance = 0;

This code is included in §439.

The special case for right-side deletion, where x lacks a right child, and the general form
of the code, are shown here:

Chapter 11: Right-Threaded AVL Trees 259

0a

-x

--y

⇒
0a

0x

0 y

§446 〈Rebalance for − balance factor after right-side RTAVL deletion 446 〉 ≡
if (x→rtavl rtag == RTAVL_CHILD)

y→rtavl link [0] = x→rtavl link [1];
else {

y→rtavl link [0] = NULL;
x→rtavl rtag = RTAVL_CHILD;

}
x→rtavl link [1] = y ;
y→rtavl balance = x→rtavl balance = 0;
This code is included in §440.

Exercises:

1. In the chapter about TAVL deletion, we offered two implementations of deletion: one
using a stack (〈TAVL item deletion function, with stack 659 〉) and one using an algorithm
to find node parents (〈TAVL item deletion function 311 〉). For RTAVL deletion, we offer
only a stack-based implementation. Why?

2. The introduction to this section states that left-looking deletion is more efficient than
right-looking deletion in an RTAVL tree. Confirm this by writing a right-looking alternate
implementation of 〈Step 2: Delete RTAVL node 431 〉 and comparing the two sets of code.

3. Rewrite 〈Case 4 in RTAVL deletion 435 〉 to replace the deleted node’s rtavl data by its
successor, then delete the successor, instead of shuffling pointers. (Refer back to Exercise
4.8-3 for an explanation of why this approach cannot be used in Libavl.)

11.6 Copying

We can reuse most of the RTBST copying functionality for copying RTAVL trees, but
we must modify the node copy function to copy the balance factor into the new node as
well.

§447 〈RTAVL copy function 447 〉 ≡
〈RTAVL node copy function 448 〉
〈RTBST copy error helper function; rtbst ⇒ rtavl 405 〉
〈RTBST main copy function; rtbst ⇒ rtavl 403 〉
This code is included in §418 and §455.

§448 〈RTAVL node copy function 448 〉 ≡
static int copy node (struct rtavl table ∗tree, struct rtavl node ∗dst , int dir ,

const struct rtavl node ∗src, rtavl copy func ∗copy) {
struct rtavl node ∗new = tree→rtavl alloc→libavl malloc (tree→rtavl alloc,

sizeof ∗new);
if (new == NULL)

return 0;
new→rtavl link [0] = NULL;

260 GNU libavl 2.0.1

new→rtavl rtag = RTAVL_THREAD;
if (dir == 0)

new→rtavl link [1] = dst ;
else {

new→rtavl link [1] = dst→rtavl link [1];
dst→rtavl rtag = RTAVL_CHILD;

}
dst→rtavl link [dir] = new ;
new→rtavl balance = src→rtavl balance;
if (copy == NULL)

new→rtavl data = src→rtavl data;
else {

new→rtavl data = copy (src→rtavl data, tree→rtavl param);
if (new→rtavl data == NULL)

return 0;
}
return 1;

}
This code is included in §447.

11.7 Testing

§449 〈 rtavl-test.c 449 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “rtavl.h”
#include “test.h”
〈RTBST print function; rtbst ⇒ rtavl 412 〉
〈BST traverser check function; bst ⇒ rtavl 104 〉
〈Compare two RTAVL trees for structure and content 450 〉
〈Recursively verify RTAVL tree structure 451 〉
〈AVL tree verify function; avl ⇒ rtavl 190 〉
〈BST test function; bst ⇒ rtavl 100 〉
〈BST overflow test function; bst ⇒ rtavl 122 〉

§450 〈Compare two RTAVL trees for structure and content 450 〉 ≡
static int compare trees (struct rtavl node ∗a, struct rtavl node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

if (a != NULL || b != NULL) {
printf ("Ãa=%dÃb=%d\n",

a ? ∗(int ∗) a→rtavl data : −1, b ? ∗(int ∗) b→rtavl data : −1);
assert (0);

}

Chapter 11: Right-Threaded AVL Trees 261

return 1;
}
assert (a != b);

if (∗(int ∗) a→rtavl data != ∗(int ∗) b→rtavl data
|| a→rtavl rtag != b→rtavl rtag
|| a→rtavl balance != b→rtavl balance) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%dÃ(bal=%d)Ãb=%dÃ(bal=%d)Ãa:",

∗(int ∗) a→rtavl data, a→rtavl balance,
∗(int ∗) b→rtavl data, b→rtavl balance);

if (a→rtavl rtag == RTAVL_CHILD) printf ("r");

printf ("Ãb:");
if (b→rtavl rtag == RTAVL_CHILD) printf ("r");

printf ("\n");
return 0;

}
if (a→rtavl rtag == RTAVL_THREAD)

assert ((a→rtavl link [1] == NULL) != (a→rtavl link [1] != b→rtavl link [1]));

okay = compare trees (a→rtavl link [0], b→rtavl link [0]);
if (a→rtavl rtag == RTAVL_CHILD)

okay &= compare trees (a→rtavl link [1], b→rtavl link [1]);
return okay ;

}
This code is included in §449.

§451 〈Recursively verify RTAVL tree structure 451 〉 ≡
static void recurse verify tree (struct rtavl node ∗node, int ∗okay , size t ∗count ,

int min, int max , int ∗height) {
int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
int subheight [2]; /∗ Heights of subtrees. ∗/
if (node == NULL) {

∗count = 0;
∗height = 0;
return;

}
d = ∗(int ∗) node→rtavl data;

〈Verify binary search tree ordering 114 〉
subcount [0] = subcount [1] = 0;
subheight [0] = subheight [1] = 0;
recurse verify tree (node→rtavl link [0], okay , &subcount [0],

min, d − 1, &subheight [0]);
if (node→rtavl rtag == RTAVL_CHILD)

recurse verify tree (node→rtavl link [1], okay , &subcount [1],
d + 1, max , &subheight [1]);

∗count = 1 + subcount [0] + subcount [1];

262 GNU libavl 2.0.1

∗height = 1 + (subheight [0] > subheight [1] ? subheight [0] : subheight [1]);
〈Verify AVL node balance factor; avl ⇒ rtavl 189 〉

}
This code is included in §449.

Chapter 12: Right-Threaded Red-Black Trees 263

12 Right-Threaded Red-Black Trees

This chapter is this book’s final demonstration of right-threaded trees, carried out by
using them in a red-black tree implementation of tables. The chapter, and the code, follow
the pattern that should now be familiar, using rtrb as the naming prefix and often referring
to right-threaded right-black trees as “RTRB trees”.

§452 〈 rtrb.h 452 〉 ≡
〈License 1 〉
#ifndef RTRB_H
#define RTRB_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ rtrb 14 〉
〈RB maximum height; rb ⇒ rtrb 195 〉
〈TBST table structure; tbst ⇒ rtrb 250 〉
〈RTRB node structure 454 〉
〈TBST traverser structure; tbst ⇒ rtrb 267 〉
〈Table function prototypes; tbl ⇒ rtrb 15 〉
#endif /∗ rtrb.h ∗/

§453 〈 rtrb.c 453 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “rtrb.h”
〈RTRB functions 455 〉

12.1 Data Types

Like any right-threaded tree node, an RTRB node has a right tag, and like any red-
black tree node, an RTRB node has a color, either red or black. The combination is
straightforward, as shown here.

§454 〈RTRB node structure 454 〉 ≡
/∗ Color of a red-black node. ∗/
enum rtrb color {

RTRB_BLACK, /∗ Black. ∗/
RTRB_RED /∗ Red. ∗/

};
/∗ Characterizes a link as a child pointer or a thread. ∗/
enum rtrb tag {

RTRB_CHILD, /∗ Child pointer. ∗/
RTRB_THREAD /∗ Thread. ∗/

};
/∗ A threaded binary search tree node. ∗/
struct rtrb node {

struct rtrb node ∗rtrb link [2]; /∗ Subtrees. ∗/

264 GNU libavl 2.0.1

void ∗rtrb data; /∗ Pointer to data. ∗/
unsigned char rtrb color ; /∗ Color. ∗/
unsigned char rtrb rtag ; /∗ Tag field. ∗/

};
This code is included in §452.

12.2 Operations

Most of the operations on RTRB trees can be borrowed from the corresponding opera-
tions on TBSTs, RTBSTs, or RTAVL trees, as shown below.

§455 〈RTRB functions 455 〉 ≡
〈TBST creation function; tbst ⇒ rtrb 252 〉
〈RTBST search function; rtbst ⇒ rtrb 376 〉
〈RTRB item insertion function 456 〉
〈Table insertion convenience functions; tbl ⇒ rtrb 592 〉
〈RTRB item deletion function 468 〉
〈RTBST traversal functions; rtbst ⇒ rtrb 395 〉
〈RTAVL copy function; rtavl ⇒ rtrb; rtavl balance ⇒ rtrb color 447 〉
〈RTBST destruction function; rtbst ⇒ rtrb 407 〉
〈Default memory allocation functions; tbl ⇒ rtrb 6 〉
〈Table assertion functions; tbl ⇒ rtrb 594 〉
This code is included in §453.

12.3 Insertion

Insertion is, as usual, one of the operations that must be newly implemented for our new
type of tree. There is nothing surprising in the function’s outline:

§456 〈RTRB item insertion function 456 〉 ≡
void ∗∗rtrb probe (struct rtrb table ∗tree, void ∗item) {

struct rtrb node ∗pa[RTRB_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[RTRB_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k ; /∗ Stack height. ∗/
struct rtrb node ∗p; /∗ Current node in search. ∗/
struct rtrb node ∗n; /∗ New node. ∗/
int dir ; /∗ Side of p on which p is located. ∗/
assert (tree != NULL && item != NULL);

〈Step 1: Search RTRB tree for insertion point 457 〉
〈Step 2: Insert RTRB node 458 〉
〈Step 3: Rebalance after RTRB insertion 459 〉
return &n→rtrb data;

}
This code is included in §455.

Chapter 12: Right-Threaded Red-Black Trees 265

12.3.1 Steps 1 and 2: Search and Insert

The process of search and insertion proceeds as usual. Stack pa[], with pa[k − 1] at top of
stack, records the parents of the node p currently under consideration, with corresponding
stack da[] indicating the direction moved. We use the standard code for insertion into an
RTBST. When the loop exits, p is the node under which a new node should be inserted on
side dir .

§457 〈Step 1: Search RTRB tree for insertion point 457 〉 ≡
da[0] = 0;
pa[0] = (struct rtrb node ∗) &tree→rtrb root ;
k = 1;
if (tree→rtrb root != NULL)

for (p = tree→rtrb root ; ; p = p→rtrb link [dir]) {
int cmp = tree→rtrb compare (item, p→rtrb data, tree→rtrb param);
if (cmp == 0)

return &p→rtrb data;
pa[k] = p;
da[k++] = dir = cmp > 0;
if (dir == 0) {

if (p→rtrb link [0] == NULL)
break;

} else /∗ dir == 1 ∗/ {
if (p→rtrb rtag == RTRB_THREAD)

break;
}

}
else {

p = (struct rtrb node ∗) &tree→rtrb root ;
dir = 0;

}
This code is included in §456.

§458 〈Step 2: Insert RTRB node 458 〉 ≡
n = tree→rtrb alloc→libavl malloc (tree→rtrb alloc, sizeof ∗n);
if (n == NULL)

return NULL;
tree→rtrb count++;
n→rtrb data = item;
n→rtrb link [0] = NULL;
if (dir == 0) {

if (tree→rtrb root != NULL)
n→rtrb link [1] = p;

else n→rtrb link [1] = NULL;
} else /∗ dir == 1 ∗/ {

p→rtrb rtag = RTRB_CHILD;
n→rtrb link [1] = p→rtrb link [1];

}

266 GNU libavl 2.0.1

n→rtrb rtag = RTRB_THREAD;
n→rtrb color = RTRB_RED;
p→rtrb link [dir] = n;
This code is included in §456.

12.3.2 Step 3: Rebalance

The rebalancing outline follows 〈Step 3: Rebalance after RB insertion 201 〉.
§459 〈Step 3: Rebalance after RTRB insertion 459 〉 ≡

while (k >= 3 && pa[k − 1]→rtrb color == RTRB_RED) {
if (da[k − 2] == 0)

{ 〈Left-side rebalancing after RTRB insertion 460 〉 }
else { 〈Right-side rebalancing after RTRB insertion 461 〉 }

}
tree→rtrb root→rtrb color = RTRB_BLACK;
This code is included in §456.

The choice of case for insertion on the left side is made in the same way as in 〈Left-side
rebalancing after RB insertion 202 〉, except that of course right-side tests for non-empty
subtrees are made using rtrb rtag instead of rtrb link [1], and similarly for insertion on the
right side. In short, we take q (which is not a real variable) as the new node n if this is the
first time through the loop, or a node whose color has just been changed to red otherwise.
We know that both q and its parent pa[k − 1] are red, violating rule 1 for red-black trees,
and that q ’s grandparent pa[k − 2] is black. Here is the code to distinguish cases:

§460 〈Left-side rebalancing after RTRB insertion 460 〉 ≡
struct rtrb node ∗y = pa[k − 2]→rtrb link [1];
if (pa[k − 2]→rtrb rtag == RTRB_CHILD && y→rtrb color == RTRB_RED)

{ 〈Case 1 in left-side RTRB insertion rebalancing 462 〉 }
else {

struct rtrb node ∗x ;
if (da[k − 1] == 0)

y = pa[k − 1];
else { 〈Case 3 in left-side RTRB insertion rebalancing 466 〉 }
〈Case 2 in left-side RTRB insertion rebalancing 464 〉
break;

}
This code is included in §459.

§461 〈Right-side rebalancing after RTRB insertion 461 〉 ≡
struct rtrb node ∗y = pa[k − 2]→rtrb link [0];
if (pa[k − 2]→rtrb link [0] != NULL && y→rtrb color == RTRB_RED)

{ 〈Case 1 in right-side RTRB insertion rebalancing 463 〉 }
else {

struct rtrb node ∗x ;
if (da[k − 1] == 1)

y = pa[k − 1];
else { 〈Case 3 in right-side RTRB insertion rebalancing 467 〉 }

Chapter 12: Right-Threaded Red-Black Trees 267

〈Case 2 in right-side RTRB insertion rebalancing 465 〉
break;

}
This code is included in §459.

Case 1: q ’s uncle is red

If node q ’s uncle is red, then no links need be changed. Instead, we will just recolor
nodes. We reuse the code for RB insertion (see page 145):

§462 〈Case 1 in left-side RTRB insertion rebalancing 462 〉 ≡
〈Case 1 in left-side RB insertion rebalancing; rb ⇒ rtrb 203 〉
This code is included in §460.

§463 〈Case 1 in right-side RTRB insertion rebalancing 463 〉 ≡
〈Case 1 in right-side RB insertion rebalancing; rb ⇒ rtrb 207 〉
This code is included in §461.

Case 2: q is on same side of parent as parent is of grandparent

If q is a left child of its parent y and y is a left child of its own parent x , or if both q
and y are right children, then we rotate at x away from y . This is the same that we would
do in an unthreaded RB tree (see page 145).

However, as usual, we must make sure that threads are fixed up properly in the rotation.
In particular, for case 2 in left-side rebalancing, we must convert a right thread of y , after
rotation, into a null left child pointer of x , like this:

a

q

b

ypa[k-1]

xpa[k-2]

d ⇒

a

q

b

y

x

d

§464 〈Case 2 in left-side RTRB insertion rebalancing 464 〉 ≡
〈Case 2 in left-side RB insertion rebalancing; rb ⇒ rtrb 204 〉
if (y→rtrb rtag == RTRB_THREAD) {

y→rtrb rtag = RTRB_CHILD;
x→rtrb link [0] = NULL;

}
This code is included in §460.

For the right-side rebalancing case, we must convert a null left child of y , after rotation,
into a right thread of x :

268 GNU libavl 2.0.1

a

pa[k-2]

y pa[k-1]

c

q

d

⇒

a

x

y

c

q

d

§465 〈Case 2 in right-side RTRB insertion rebalancing 465 〉 ≡
〈Case 2 in right-side RB insertion rebalancing; rb ⇒ rtrb 208 〉
if (x→rtrb link [1] == NULL) {

x→rtrb rtag = RTRB_THREAD;
x→rtrb link [1] = y ;

}
This code is included in §461.

Case 3: q is on opposite side of parent as parent is of grandparent

If q is a left child and its parent is a right child, or vice versa, then we have an instance
of case 3, and we rotate at q ’s parent in the direction from q to its parent. We handle this
case as seen before for unthreaded RB trees (see page 146), with the addition of fix-ups for
threads during rotation.

The left-side fix-up and the code to do it look like this:

a

xpa[k-1]

q y

c

pa[k-2]

d ⇒

a

x

y

c

d

§466 〈Case 3 in left-side RTRB insertion rebalancing 466 〉 ≡
〈Case 3 in left-side RB insertion rebalancing; rb ⇒ rtrb 205 〉
if (x→rtrb link [1] == NULL) {

x→rtrb rtag = RTRB_THREAD;
x→rtrb link [1] = y ;

}
This code is included in §460.

Here’s the right-side fix-up and code:

a

pa[k-2]

b

qy

x pa[k-1]

d
⇒ a

b

y

x

d

§467 〈Case 3 in right-side RTRB insertion rebalancing 467 〉 ≡
〈Case 3 in right-side RB insertion rebalancing; rb ⇒ rtrb 209 〉

Chapter 12: Right-Threaded Red-Black Trees 269

if (y→rtrb rtag == RTRB_THREAD) {
y→rtrb rtag = RTRB_CHILD;
x→rtrb link [0] = NULL;

}
This code is included in §461.

12.4 Deletion

The process of deletion from an RTRB tree is the same that we’ve seen many times now.
Code for the first step is borrowed from RTAVL deletion:

§468 〈RTRB item deletion function 468 〉 ≡
void ∗rtrb delete (struct rtrb table ∗tree, const void ∗item) {

struct rtrb node ∗pa[RTRB_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[RTRB_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k ; /∗ Stack height. ∗/
struct rtrb node ∗p;

assert (tree != NULL && item != NULL);

〈Step 1: Search RTAVL tree for item to delete; rtavl ⇒ rtrb 430 〉
〈Step 2: Delete RTRB node 469 〉
〈Step 3: Rebalance after RTRB deletion 474 〉
〈Step 4: Finish up after RTRB deletion 481 〉

}
This code is included in §455.

12.4.1 Step 2: Delete

We use left-looking deletion. At this point, p is the node to delete. After the deletion, x
is the node that replaced p, or a null pointer if the node was deleted without replacement.
The cases are distinguished in the usual way:

§469 〈Step 2: Delete RTRB node 469 〉 ≡
if (p→rtrb link [0] == NULL) {

if (p→rtrb rtag == RTRB_CHILD)
{ 〈Case 1 in RTRB deletion 470 〉 }

else { 〈Case 2 in RTRB deletion 471 〉 }
} else {

enum rtrb color t ;
struct rtrb node ∗r = p→rtrb link [0];

if (r→rtrb rtag == RTRB_THREAD)
{ 〈Case 3 in RTRB deletion 472 〉 }

else { 〈Case 4 in RTRB deletion 473 〉 }
}
This code is included in §468.

270 GNU libavl 2.0.1

Case 1: p has a right child but no left child

If p, the node to be deleted, has a right child but no left child, then we replace it by its
right child. This is the same as 〈Case 1 in RTAVL deletion 432 〉.

§470 〈Case 1 in RTRB deletion 470 〉 ≡
〈Case 1 in RTAVL deletion; rtavl ⇒ rtrb 432 〉
This code is included in §469.

Case 2: p has a right thread and no left child

Similarly, case 2 is the same as 〈Case 2 in RTAVL deletion 433 〉, with the addition of an
assignment to x .

§471 〈Case 2 in RTRB deletion 471 〉 ≡
〈Case 2 in RTAVL deletion; rtavl ⇒ rtrb 433 〉
This code is included in §469.

Case 3: p’s left child has a right thread

If p has a left child r , and r has a right thread, then we replace p by r and transfer p’s
former right link to r . Node r also receives p’s balance factor.

§472 〈Case 3 in RTRB deletion 472 〉 ≡
r→rtrb link [1] = p→rtrb link [1];
r→rtrb rtag = p→rtrb rtag ;
t = r→rtrb color ;
r→rtrb color = p→rtrb color ;
p→rtrb color = t ;
pa[k − 1]→rtrb link [da[k − 1]] = r ;
da[k] = 0;
pa[k++] = r ;
This code is included in §469.

Case 4: p’s left child has a right child

The fourth case, where p has a left child that itself has a right child, uses the same
algorithm as 〈Case 4 in RTAVL deletion 435 〉, except that instead of setting the balance
factor of s, we swap the colors of t and s as in 〈Case 3 in RB deletion 224 〉.

§473 〈Case 4 in RTRB deletion 473 〉 ≡
struct rtrb node ∗s;
int j = k++;
for (;;) {

da[k] = 1;
pa[k++] = r ;
s = r→rtrb link [1];
if (s→rtrb rtag == RTRB_THREAD)

break;
r = s;

Chapter 12: Right-Threaded Red-Black Trees 271

}
da[j] = 0;
pa[j] = pa[j − 1]→rtrb link [da[j − 1]] = s;
if (s→rtrb link [0] != NULL)

r→rtrb link [1] = s→rtrb link [0];
else {

r→rtrb rtag = RTRB_THREAD;
r→rtrb link [1] = s;

}
s→rtrb link [0] = p→rtrb link [0];
s→rtrb link [1] = p→rtrb link [1];
s→rtrb rtag = p→rtrb rtag ;
t = s→rtrb color ;
s→rtrb color = p→rtrb color ;
p→rtrb color = t ;
This code is included in §469.

12.4.2 Step 3: Rebalance

The rebalancing step’s outline is much like that for deletion in a symmetrically threaded
tree, except that we must check for a null child pointer on the left side of x versus a thread
on the right side:

§474 〈Step 3: Rebalance after RTRB deletion 474 〉 ≡
if (p→rtrb color == RTRB_BLACK) {

for (; k > 1; k−−) {
struct rtrb node ∗x ;
if (da[k − 1] == 0 || pa[k − 1]→rtrb rtag == RTRB_CHILD)

x = pa[k − 1]→rtrb link [da[k − 1]];
else x = NULL;
if (x != NULL && x→rtrb color == RTRB_RED) {

x→rtrb color = RTRB_BLACK;
break;

}
if (da[k − 1] == 0)

{ 〈Left-side rebalancing after RTRB deletion 475 〉 }
else { 〈Right-side rebalancing after RTRB deletion 476 〉 }

}
if (tree→rtrb root != NULL) tree→rtrb root→rtrb color = RTRB_BLACK;

}
This code is included in §468.

As for RTRB insertion, rebalancing on either side of the root is not symmetric because
the tree structure itself is not symmetric, but again the rebalancing steps are very similar.
The outlines of the left-side and right-side rebalancing code are below. The code for ensuring
that w is black and for case 1 on each side are the same as the corresponding unthreaded
RB code, because none of that code needs to check for empty trees:

272 GNU libavl 2.0.1

§475 〈Left-side rebalancing after RTRB deletion 475 〉 ≡
struct rtrb node ∗w = pa[k − 1]→rtrb link [1];
if (w→rtrb color == RTRB_RED)

{ 〈Ensure w is black in left-side RB deletion rebalancing; rb ⇒ rtrb 228 〉 }
if ((w→rtrb link [0] == NULL || w→rtrb link [0]→rtrb color == RTRB_BLACK)

&& (w→rtrb rtag == RTRB_THREAD || w→rtrb link [1]→rtrb color == RTRB_BLACK))
{ 〈Case 1 in left-side RB deletion rebalancing; rb ⇒ rtrb 229 〉 }

else {
if (w→rtrb rtag == RTRB_THREAD || w→rtrb link [1]→rtrb color == RTRB_BLACK)

{ 〈Transform left-side RTRB deletion rebalancing case 3 into case 2 479 〉 }
〈Case 2 in left-side RTRB deletion rebalancing 477 〉
break;

}
This code is included in §474.

§476 〈Right-side rebalancing after RTRB deletion 476 〉 ≡
struct rtrb node ∗w = pa[k − 1]→rtrb link [0];
if (w→rtrb color == RTRB_RED)

{ 〈Ensure w is black in right-side RB deletion rebalancing; rb ⇒ rtrb 234 〉 }
if ((w→rtrb link [0] == NULL || w→rtrb link [0]→rtrb color == RTRB_BLACK)

&& (w→rtrb rtag == RTRB_THREAD || w→rtrb link [1]→rtrb color == RTRB_BLACK))
{ 〈Case 1 in right-side RB deletion rebalancing; rb ⇒ rtrb 235 〉 }

else {
if (w→rtrb link [0] == NULL || w→rtrb link [0]→rtrb color == RTRB_BLACK)

{ 〈Transform right-side RTRB deletion rebalancing case 3 into case 2 480 〉 }
〈Case 2 in right-side RTRB deletion rebalancing 478 〉
break;

}
This code is included in §474.

Case 2: w ’s child opposite the deletion is red

If the deletion was on the left side of w and w ’s right child is red, we rotate left at pa[k −
1] and perform some recolorings, as we did for unthreaded RB trees (see page 157). There
is a special case when w has no left child. This must be transformed into a thread from
leading to w following the rotation:

a

Ax

b

Bpa[k-1]

C w

d

D

e

⇒

a

Ax

b

B

Cw

d

D

e

§477 〈Case 2 in left-side RTRB deletion rebalancing 477 〉 ≡
〈Case 2 in left-side RB deletion rebalancing; rb ⇒ rtrb 230 〉
if (w→rtrb link [0]→rtrb link [1] == NULL) {

Chapter 12: Right-Threaded Red-Black Trees 273

w→rtrb link [0]→rtrb rtag = RTRB_THREAD;
w→rtrb link [0]→rtrb link [1] = w ;

}
This code is included in §475.

Alternately, if the deletion was on the right side of w and w ’s left child is right, we rotate
right at pa[k − 1] and recolor. There is an analogous special case:

a

A

b

Bw

Cpa[k-1]

d

D x

e
⇒

a

A

b

B w

C

d

D x

e

§478 〈Case 2 in right-side RTRB deletion rebalancing 478 〉 ≡
〈Case 2 in right-side RB deletion rebalancing; rb ⇒ rtrb 237 〉
if (w→rtrb rtag == RTRB_THREAD) {

w→rtrb rtag = RTRB_CHILD;
pa[k − 1]→rtrb link [0] = NULL;

}
This code is included in §476.

Case 3: w ’s child on the side of the deletion is red

If the deletion was on the left side of w and w ’s left child is red, then we rotate right at
w and recolor, as in case 3 for unthreaded RB trees (see page 157). There is a special case
when w ’s left child has a right thread. This must be transformed into a null left child of
w ’s right child following the rotation:

a

Ax

b

Bpa[k-1]

c

C

D w

e
⇒

a

Ax

b

Bpa[k-1]

c

C w

D

e

§479 〈Transform left-side RTRB deletion rebalancing case 3 into case 2 479 〉 ≡
〈Transform left-side RB deletion rebalancing case 3 into case 2; rb ⇒ rtrb 231 〉
if (w→rtrb rtag == RTRB_THREAD) {

w→rtrb rtag = RTRB_CHILD;
w→rtrb link [1]→rtrb link [0] = NULL;

}
This code is included in §475.

Alternately, if the deletion was on the right side of w and w ’s right child is red, we rotate
left at w and recolor. There is an analogous special case:

274 GNU libavl 2.0.1

a

Aw

B

c

Cpa[k-1]

d

D x

e
⇒

a

A

Bw

c

Cpa[k-1]

d

D x

e

§480 〈Transform right-side RTRB deletion rebalancing case 3 into case 2 480 〉 ≡
〈Transform right-side RB deletion rebalancing case 3 into case 2; rb ⇒ rtrb 236 〉
if (w→rtrb link [0]→rtrb link [1] == NULL) {

w→rtrb link [0]→rtrb rtag = RTRB_THREAD;
w→rtrb link [0]→rtrb link [1] = w ;

}
This code is included in §476.

12.4.3 Step 4: Finish Up

§481 〈Step 4: Finish up after RTRB deletion 481 〉 ≡
tree→rtrb alloc→libavl free (tree→rtrb alloc, p);
return (void ∗) item;
This code is included in §468.

12.5 Testing

§482 〈 rtrb-test.c 482 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “rtrb.h”
#include “test.h”
〈RTBST print function; rtbst ⇒ rtrb 412 〉
〈BST traverser check function; bst ⇒ rtrb 104 〉
〈Compare two RTRB trees for structure and content 483 〉
〈Recursively verify RTRB tree structure 484 〉
〈RB tree verify function; rb ⇒ rtrb 244 〉
〈BST test function; bst ⇒ rtrb 100 〉
〈BST overflow test function; bst ⇒ rtrb 122 〉

§483 〈Compare two RTRB trees for structure and content 483 〉 ≡
static int compare trees (struct rtrb node ∗a, struct rtrb node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

if (a != NULL || b != NULL) {
printf ("Ãa=%dÃb=%d\n",

a ? ∗(int ∗) a→rtrb data : −1, b ? ∗(int ∗) b→rtrb data : −1);
assert (0);

}

Chapter 12: Right-Threaded Red-Black Trees 275

return 1;
}
assert (a != b);

if (∗(int ∗) a→rtrb data != ∗(int ∗) b→rtrb data
|| a→rtrb rtag != b→rtrb rtag
|| a→rtrb color != b→rtrb color) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%d%cÃb=%d%cÃa:",

∗(int ∗) a→rtrb data, a→rtrb color == RTRB_RED ? ’r’ : ’b’,
∗(int ∗) b→rtrb data, b→rtrb color == RTRB_RED ? ’r’ : ’b’);

if (a→rtrb rtag == RTRB_CHILD) printf ("r");

printf ("Ãb:");
if (b→rtrb rtag == RTRB_CHILD) printf ("r");

printf ("\n");
return 0;

}
if (a→rtrb rtag == RTRB_THREAD)

assert ((a→rtrb link [1] == NULL) != (a→rtrb link [1] != b→rtrb link [1]));

okay = compare trees (a→rtrb link [0], b→rtrb link [0]);
if (a→rtrb rtag == RTRB_CHILD)

okay &= compare trees (a→rtrb link [1], b→rtrb link [1]);
return okay ;

}
This code is included in §482.

§484 〈Recursively verify RTRB tree structure 484 〉 ≡
static void recurse verify tree (struct rtrb node ∗node, int ∗okay , size t ∗count ,

int min, int max , int ∗bh) {
int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
int subbh[2]; /∗ Black-heights of subtrees. ∗/
if (node == NULL) {

∗count = 0;
∗bh = 0;
return;

}
d = ∗(int ∗) node→rtrb data;

〈Verify binary search tree ordering 114 〉
subcount [0] = subcount [1] = 0;
subbh[0] = subbh[1] = 0;
recurse verify tree (node→rtrb link [0], okay , &subcount [0],

min, d − 1, &subbh[0]);
if (node→rtrb rtag == RTRB_CHILD)

recurse verify tree (node→rtrb link [1], okay , &subcount [1],
d + 1, max , &subbh[1]);

∗count = 1 + subcount [0] + subcount [1];

276 GNU libavl 2.0.1

∗bh = (node→rtrb color == RTRB_BLACK) + subbh[0];
〈Verify RB node color; rb ⇒ rtrb 241 〉
〈Verify RTRB node rule 1 compliance 485 〉
〈Verify RB node rule 2 compliance; rb ⇒ rtrb 243 〉

}
This code is included in §482.

§485 〈Verify RTRB node rule 1 compliance 485 〉 ≡
/∗ Verify compliance with rule 1. ∗/
if (node→rtrb color == RTRB_RED) {

if (node→rtrb link [0] != NULL && node→rtrb link [0]→rtrb color == RTRB_RED) {
printf ("ÃRedÃnodeÃ%dÃhasÃredÃleftÃchildÃ%d\n",

d , ∗(int ∗) node→rtrb link [0]→rtrb data);
∗okay = 0;

}
if (node→rtrb rtag == RTRB_CHILD && node→rtrb link [1]→rtrb color == RTRB_RED) {

printf ("ÃRedÃnodeÃ%dÃhasÃredÃrightÃchildÃ%d\n",
d , ∗(int ∗) node→rtrb link [1]→rtrb data);

∗okay = 0;
}

}
This code is included in §484.

Chapter 13: BSTs with Parent Pointers 277

13 BSTs with Parent Pointers

The preceding six chapters introduced two different forms of threaded trees, which sim-
plified traversal by eliminating the need for a stack. There is another way to accomplish
the same purpose: add to each node a parent pointer, a link from the node to its parent. A
binary search tree so augmented is called a BST with parent pointers, or PBST for short.1

In this chapter, we show how to add parent pointers to binary trees. The next two chapters
will add them to AVL trees and red-black trees.

Parent pointers and threads have equivalent power. That is, given a node within a
threaded tree, we can find the node’s parent, and given a node within a tree with parent
pointers, we can determine the targets of any threads that the node would have in a similar
threaded tree.

Parent pointers have some advantages over threads. In particular, parent pointers let us
more efficiently eliminate the stack for insertion and deletion in balanced trees. Rebalancing
during these operations requires us to locate the parents of nodes. In our implementations
of threaded balanced trees, we wrote code to do this, but it took a relatively complicated
and slow helper function. Parent pointers make it much faster and easier. It is also easier
to search a tree with parent pointers than a threaded tree, because there is no need to check
tags. Outside of purely technical issues, many people find the use of parent pointers more
intuitive than threads.

On the other hand, to traverse a tree with parent pointers in inorder we may have to
follow several parent pointers instead of a single thread. What’s more, parent pointers take
extra space for a third pointer field in every node, whereas the tag fields in threaded balanced
trees often fit into node structures without taking up additional room (see Exercise 8.1-1).
Finally, maintaining parent pointers on insertion and deletion takes time. In fact, we’ll
see that it takes more operations (and thus, all else being equal, time) than maintaining
threads.

In conclusion, a general comparison of parent pointers with threads reveals no clear
winner. Further discussion of the merits of parent pointers versus those of threads will be
postponed until later in this book. For now, we’ll stick to the problems of parent pointer
implementation.

Here’s the outline of the PBST code. We’re using the prefix pbst this time:
§486 〈 pbst.h 486 〉 ≡

〈License 1 〉
#ifndef PBST_H
#define PBST_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ pbst 14 〉
〈TBST table structure; tbst ⇒ pbst 250 〉
〈PBST node structure 488 〉
〈TBST traverser structure; tbst ⇒ pbst 267 〉
〈Table function prototypes; tbl ⇒ pbst 15 〉

1 This abbreviation might be thought of as expanding to “parented BST” or “parental BST”, but those
are not proper terms.

278 GNU libavl 2.0.1

〈BST extra function prototypes; bst ⇒ pbst 88 〉
#endif /∗ pbst.h ∗/

§487 〈 pbst.c 487 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “pbst.h”
〈PBST functions 489 〉

13.1 Data Types

For PBSTs we reuse TBST table and traverser structures. In fact, the only data type
that needs revision is the node structure. We take the basic form of a node and add a
member pbst parent to point to its parent node:

§488 〈PBST node structure 488 〉 ≡
/∗ A binary search tree with parent pointers node. ∗/
struct pbst node {

struct pbst node ∗pbst link [2]; /∗ Subtrees. ∗/
struct pbst node ∗pbst parent ; /∗ Parent. ∗/
void ∗pbst data; /∗ Pointer to data. ∗/

};
This code is included in §486.

There is one special case: what should be the value of pbst parent for a node that has
no parent, that is, in the tree’s root? There are two reasonable choices.

First, pbst parent could be NULL in the root. This makes it easy to check whether a node
is the tree’s root. On the other hand, we often follow a parent pointer in order to change
the link down from the parent, and NULL as the root node’s pbst parent requires a special
case.

We can eliminate this special case if the root’s pbst parent is the tree’s pseudo-root
node, that is, (struct pbst node ∗) &tree→pbst root . The downside of this choice is that it
becomes uglier, and perhaps slower, to check whether a node is the tree’s root, because a
comparison must be made against a non-constant expression instead of simply NULL.

In this book, we make the former choice, so pbst parent is NULL in the tree’s root node.
See also: [Cormen 1990], section 11.4.

13.2 Operations

When we added parent pointers to BST nodes, we did not change the interpretation of
any of the node members. This means that any function that examines PBSTs without
modifying them will work without change. We take advantage of that for tree search. We
also get away with it for destruction, since there’s no problem with failing to update parent
pointers in that case. Although we could, technically, do the same for traversal, that would
negate much of the advantage of parent pointers, so we reimplement them. Here is the
overall outline:

Chapter 13: BSTs with Parent Pointers 279

§489 〈PBST functions 489 〉 ≡
〈TBST creation function; tbst ⇒ pbst 252 〉
〈BST search function; bst ⇒ pbst 31 〉
〈PBST item insertion function 490 〉
〈Table insertion convenience functions; tbl ⇒ pbst 592 〉
〈PBST item deletion function 493 〉
〈PBST traversal functions 502 〉
〈PBST copy function 509 〉
〈BST destruction function; bst ⇒ pbst 84 〉
〈PBST balance function 511 〉
〈Default memory allocation functions; tbl ⇒ pbst 6 〉
〈Table assertion functions; tbl ⇒ pbst 594 〉
This code is included in §487.

13.3 Insertion

The only difference between this code and 〈BST item insertion function 32 〉 is that we
set n’s parent pointer after insertion.

§490 〈PBST item insertion function 490 〉 ≡
void ∗∗pbst probe (struct pbst table ∗tree, void ∗item) {

struct pbst node ∗p, ∗q ; /∗ Current node in search and its parent. ∗/
int dir ; /∗ Side of q on which p is located. ∗/
struct pbst node ∗n; /∗ Newly inserted node. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search PBST tree for insertion point 491 〉
〈Step 2: Insert PBST node 492 〉
return &n→pbst data;

}
This code is included in §489.

§491 〈Step 1: Search PBST tree for insertion point 491 〉 ≡
for (q = NULL, p = tree→pbst root ; p != NULL; q = p, p = p→pbst link [dir]) {

int cmp = tree→pbst compare (item, p→pbst data, tree→pbst param);
if (cmp == 0)

return &p→pbst data;
dir = cmp > 0;

}
This code is included in §490 and §555.

§492 〈Step 2: Insert PBST node 492 〉 ≡
n = tree→pbst alloc→libavl malloc (tree→pbst alloc, sizeof ∗p);
if (n == NULL)

return NULL;
tree→pbst count++;
n→pbst link [0] = n→pbst link [1] = NULL;
n→pbst parent = q ;
n→pbst data = item;

280 GNU libavl 2.0.1

if (q != NULL)
q→pbst link [dir] = n;

else tree→pbst root = n;
This code is included in §490, §525, and §556.

See also: [Cormen 1990], section 13.3.

13.4 Deletion

The new aspect of deletion in a PBST is that we must properly adjust parent pointers.
The outline is the same as usual:

§493 〈PBST item deletion function 493 〉 ≡
void ∗pbst delete (struct pbst table ∗tree, const void ∗item) {

struct pbst node ∗p; /∗ Traverses tree to find node to delete. ∗/
struct pbst node ∗q ; /∗ Parent of p. ∗/
int dir ; /∗ Side of q on which p is linked. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Find PBST node to delete 494 〉
〈Step 2: Delete PBST node 496 〉
〈Step 3: Finish up after deleting PBST node 501 〉

}
This code is included in §489.

We find the node to delete by using p to search for item. For the first time in imple-
menting a deletion routine, we do not keep track of the current node’s parent, because we
can always find it out later with little effort:

§494 〈Step 1: Find PBST node to delete 494 〉 ≡
if (tree→pbst root == NULL)

return NULL;
p = tree→pbst root ;
for (;;) {

int cmp = tree→pbst compare (item, p→pbst data, tree→pbst param);
if (cmp == 0)

break;
dir = cmp > 0;
p = p→pbst link [dir];
if (p == NULL)

return NULL;
}
item = p→pbst data;
See also §495.

This code is included in §493, §534, and §566.

Now we’ve found the node to delete, p. The first step in deletion is to find the parent of
p as q . Node p is q ’s child on side dir . Deletion of the root is a special case:

§495 〈Step 1: Find PBST node to delete 494 〉 +≡
q = p→pbst parent ;

Chapter 13: BSTs with Parent Pointers 281

if (q == NULL) {
q = (struct pbst node ∗) &tree→pbst root ;
dir = 0;

}
The remainder of the deletion follows the usual outline:

§496 〈Step 2: Delete PBST node 496 〉 ≡
if (p→pbst link [1] == NULL)

{ 〈Case 1 in PBST deletion 497 〉 }
else {

struct pbst node ∗r = p→pbst link [1];
if (r→pbst link [0] == NULL)

{ 〈Case 2 in PBST deletion 498 〉 }
else { 〈Case 3 in PBST deletion 499 〉 }

}
This code is included in §493.

Case 1: p has no right child

If p has no right child, then we can replace it by its left child, if any. If p does have a
left child then we must update its parent to be p’s former parent.

§497 〈Case 1 in PBST deletion 497 〉 ≡
q→pbst link [dir] = p→pbst link [0];
if (q→pbst link [dir] != NULL)

q→pbst link [dir]→pbst parent = p→pbst parent ;

This code is included in §496, §536, and §568.

Case 2: p’s right child has no left child

When we delete a node with a right child that in turn has no left child, the operation
looks like this:

a

p

r

b

⇒ a

r

b

The key points to notice are that node r ’s parent changes and so does the parent of r ’s
new left child, if there is one. We update these in deletion:

§498 〈Case 2 in PBST deletion 498 〉 ≡
r→pbst link [0] = p→pbst link [0];
q→pbst link [dir] = r ;
r→pbst parent = p→pbst parent ;
if (r→pbst link [0] != NULL)

r→pbst link [0]→pbst parent = r ;

This code is included in §496, §537, and §569.

282 GNU libavl 2.0.1

Case 3: p’s right child has a left child

If p’s right child has a left child, then we replace p by its successor, as usual. Finding
the successor s and its parent r is a little simpler than usual, because we can move up the
tree so easily. We know that s has a non-null parent so there is no need to handle that
special case:

§499 〈Case 3 in PBST deletion 499 〉 ≡
struct pbst node ∗s = r→pbst link [0];
while (s→pbst link [0] != NULL)

s = s→pbst link [0];
r = s→pbst parent ;
See also §500.

This code is included in §496, §538, and §570.

The only other change here is that we must update parent pointers. It is easy to pick
out the ones that must be changed by looking at a diagram of the deletion:

a

p

s

b

r

c

...

x

d
⇒

a

s

b

r

c

...

x

d

Node s’s parent changes, as do the parents of its new right child x and, if it has one, its
left child a. Perhaps less obviously, if s originally had a right child, it becomes the new left
child of r , so its new parent is r :

§500 〈Case 3 in PBST deletion 499 〉 +≡
r→pbst link [0] = s→pbst link [1];
s→pbst link [0] = p→pbst link [0];
s→pbst link [1] = p→pbst link [1];
q→pbst link [dir] = s;
if (s→pbst link [0] != NULL)

s→pbst link [0]→pbst parent = s;
s→pbst link [1]→pbst parent = s;
s→pbst parent = p→pbst parent ;
if (r→pbst link [0] != NULL)

r→pbst link [0]→pbst parent = r ;
Finally, we free the deleted node p and return its data:

§501 〈Step 3: Finish up after deleting PBST node 501 〉 ≡
tree→pbst alloc→libavl free (tree→pbst alloc, p);
tree→pbst count−−;
return (void ∗) item;
This code is included in §493.

Chapter 13: BSTs with Parent Pointers 283

See also: [Cormen 1990], section 13.3.

Exercises:

1. In case 1, can we change the right side of the assignment in the if statement’s consequent
from p→pbst parent to q?

13.5 Traversal

The traverser for a PBST is just like that for a TBST, so we can reuse a couple of the
TBST functions. Besides that and a couple of completely generic functions, we have to
reimplement the traversal functions.

§502 〈PBST traversal functions 502 〉 ≡
〈TBST traverser null initializer; tbst ⇒ pbst 269 〉
〈PBST traverser first initializer 503 〉
〈PBST traverser last initializer 504 〉
〈PBST traverser search initializer 505 〉
〈PBST traverser insertion initializer 506 〉
〈TBST traverser copy initializer; tbst ⇒ pbst 274 〉
〈PBST traverser advance function 507 〉
〈PBST traverser back up function 508 〉
〈BST traverser current item function; bst ⇒ pbst 74 〉
〈BST traverser replacement function; bst ⇒ pbst 75 〉
This code is included in §489.

13.5.1 Starting at the First Node

Finding the smallest node in the tree is just a matter of starting from the root and
descending as far to the left as we can.

§503 〈PBST traverser first initializer 503 〉 ≡
void ∗pbst t first (struct pbst traverser ∗trav , struct pbst table ∗tree) {

assert (tree != NULL && trav != NULL);
trav→pbst table = tree;
trav→pbst node = tree→pbst root ;
if (trav→pbst node != NULL) {

while (trav→pbst node→pbst link [0] != NULL)
trav→pbst node = trav→pbst node→pbst link [0];

return trav→pbst node→pbst data;
}
else return NULL;

}
This code is included in §502 and §546.

13.5.2 Starting at the Last Node

This is the same as starting from the least item, except that we descend to the right.
§504 〈PBST traverser last initializer 504 〉 ≡

284 GNU libavl 2.0.1

void ∗pbst t last (struct pbst traverser ∗trav , struct pbst table ∗tree) {
assert (tree != NULL && trav != NULL);
trav→pbst table = tree;
trav→pbst node = tree→pbst root ;
if (trav→pbst node != NULL) {

while (trav→pbst node→pbst link [1] != NULL)
trav→pbst node = trav→pbst node→pbst link [1];

return trav→pbst node→pbst data;
}
else return NULL;

}
This code is included in §502 and §546.

13.5.3 Starting at a Found Node

To start from a particular item, we search for it in the tree. If it exists then we initialize
the traverser to it. Otherwise, we initialize the traverser to the null item and return a null
pointer. There are no surprises here.

§505 〈PBST traverser search initializer 505 〉 ≡
void ∗pbst t find (struct pbst traverser ∗trav , struct pbst table ∗tree, void ∗item) {

struct pbst node ∗p;
int dir ;
assert (trav != NULL && tree != NULL && item != NULL);
trav→pbst table = tree;
for (p = tree→pbst root ; p != NULL; p = p→pbst link [dir]) {

int cmp = tree→pbst compare (item, p→pbst data, tree→pbst param);
if (cmp == 0) {

trav→pbst node = p;
return p→pbst data;

}
dir = cmp > 0;

}
trav→pbst node = NULL;
return NULL;

}
This code is included in §502 and §546.

13.5.4 Starting at an Inserted Node

This function combines the functionality of search and insertion with initialization of a
traverser.

§506 〈PBST traverser insertion initializer 506 〉 ≡
void ∗pbst t insert (struct pbst traverser ∗trav , struct pbst table ∗tree, void ∗item) {

struct pbst node ∗p, ∗q ; /∗ Current node in search and its parent. ∗/
int dir ; /∗ Side of q on which p is located. ∗/

Chapter 13: BSTs with Parent Pointers 285

struct pbst node ∗n; /∗ Newly inserted node. ∗/
assert (trav != NULL && tree != NULL && item != NULL);
trav→pbst table = tree;
for (q = NULL, p = tree→pbst root ; p != NULL; q = p, p = p→pbst link [dir]) {

int cmp = tree→pbst compare (item, p→pbst data, tree→pbst param);
if (cmp == 0) {

trav→pbst node = p;
return p→pbst data;

}
dir = cmp > 0;

}
trav→pbst node = n = tree→pbst alloc→libavl malloc (tree→pbst alloc, sizeof ∗p);
if (n == NULL) return NULL;
tree→pbst count++;
n→pbst link [0] = n→pbst link [1] = NULL;
n→pbst parent = q ;
n→pbst data = item;
if (q != NULL)

q→pbst link [dir] = n;
else tree→pbst root = n;
return item;

}
This code is included in §502.

13.5.5 Advancing to the Next Node

There are the same three cases for advancing a traverser as the other types of binary
trees that we’ve already looked at. Two of the cases, the ones where we’re starting from
the null item or a node that has a right child, are unchanged.

The third case, where the node that we’re starting from has no right child, is the case
that must be revised. We can use the same algorithm that we did for ordinary BSTs without
threads or parent pointers, described earlier (see Section 4.9.3 [Better Iterative Traversal],
page 53). Simply put, we move upward in the tree until we move up to the right (or until
we move off the top of the tree).

The code uses q to move up the tree and p as q ’s child, so the termination condition is
when p is q ’s left child or q becomes a null pointer. There is a non-null successor in the
former case, where the situation looks like this:

a

p

b

q

c

§507 〈PBST traverser advance function 507 〉 ≡
void ∗pbst t next (struct pbst traverser ∗trav) {

286 GNU libavl 2.0.1

assert (trav != NULL);

if (trav→pbst node == NULL)
return pbst t first (trav , trav→pbst table);

else if (trav→pbst node→pbst link [1] == NULL) {
struct pbst node ∗q , ∗p; /∗ Current node and its child. ∗/
for (p = trav→pbst node, q = p→pbst parent ; ; p = q , q = q→pbst parent)

if (q == NULL || p == q→pbst link [0]) {
trav→pbst node = q ;
return trav→pbst node != NULL ? trav→pbst node→pbst data : NULL;

}
} else {

trav→pbst node = trav→pbst node→pbst link [1];
while (trav→pbst node→pbst link [0] != NULL)

trav→pbst node = trav→pbst node→pbst link [0];
return trav→pbst node→pbst data;

}
}
This code is included in §502 and §546.

See also: [Cormen 1990], section 13.2.

13.5.6 Backing Up to the Previous Node

This is the same as advancing a traverser, except that we reverse the directions.

§508 〈PBST traverser back up function 508 〉 ≡
void ∗pbst t prev (struct pbst traverser ∗trav) {

assert (trav != NULL);

if (trav→pbst node == NULL)
return pbst t last (trav , trav→pbst table);

else if (trav→pbst node→pbst link [0] == NULL) {
struct pbst node ∗q , ∗p; /∗ Current node and its child. ∗/
for (p = trav→pbst node, q = p→pbst parent ; ; p = q , q = q→pbst parent)

if (q == NULL || p == q→pbst link [1]) {
trav→pbst node = q ;
return trav→pbst node != NULL ? trav→pbst node→pbst data : NULL;

}
} else {

trav→pbst node = trav→pbst node→pbst link [0];
while (trav→pbst node→pbst link [1] != NULL)

trav→pbst node = trav→pbst node→pbst link [1];
return trav→pbst node→pbst data;

}
}
This code is included in §502 and §546.

See also: [Cormen 1990], section 13.2.

Chapter 13: BSTs with Parent Pointers 287

13.6 Copying

To copy BSTs with parent pointers, we use a simple adaptation of our original algorithm
for copying BSTs, as implemented in 〈BST copy function 83 〉. That function used a stack
to keep track of the nodes that need to be revisited to have their right subtrees copies. We
can eliminate that by using the parent pointers. Instead of popping a pair of nodes off the
stack, we ascend the tree until we moved up to the left:

§509 〈PBST copy function 509 〉 ≡
〈PBST copy error helper function 510 〉
struct pbst table ∗pbst copy (const struct pbst table ∗org , pbst copy func ∗copy ,

pbst item func ∗destroy , struct libavl allocator ∗allocator) {
struct pbst table ∗new ;
const struct pbst node ∗x ;
struct pbst node ∗y ;
assert (org != NULL);
new = pbst create (org→pbst compare, org→pbst param,

allocator != NULL ? allocator : org→pbst alloc);
if (new == NULL)

return NULL;
new→pbst count = org→pbst count ;
if (new→pbst count == 0)

return new ;
x = (const struct pbst node ∗) &org→pbst root ;
y = (struct pbst node ∗) &new→pbst root ;
for (;;) {

while (x→pbst link [0] != NULL) {
y→pbst link [0] = new→pbst alloc→libavl malloc (new→pbst alloc,

sizeof ∗y→pbst link [0]);
if (y→pbst link [0] == NULL) {

if (y != (struct pbst node ∗) &new→pbst root) {
y→pbst data = NULL;
y→pbst link [1] = NULL;

}
copy error recovery (y , new , destroy);
return NULL;

}
y→pbst link [0]→pbst parent = y ;
x = x→pbst link [0];
y = y→pbst link [0];

}
y→pbst link [0] = NULL;
for (;;) {

if (copy == NULL)
y→pbst data = x→pbst data;

else {
y→pbst data = copy (x→pbst data, org→pbst param);

288 GNU libavl 2.0.1

if (y→pbst data == NULL) {
y→pbst link [1] = NULL;
copy error recovery (y , new , destroy);
return NULL;

}
}
if (x→pbst link [1] != NULL) {

y→pbst link [1] = new→pbst alloc→libavl malloc (new→pbst alloc,
sizeof ∗y→pbst link [1]);

if (y→pbst link [1] == NULL) {
copy error recovery (y , new , destroy);
return NULL;

}
y→pbst link [1]→pbst parent = y ;
x = x→pbst link [1];
y = y→pbst link [1];
break;

}
else y→pbst link [1] = NULL;
for (;;) {

const struct pbst node ∗w = x ;
x = x→pbst parent ;
if (x == NULL) {

new→pbst root→pbst parent = NULL;
return new ;

}
y = y→pbst parent ;
if (w == x→pbst link [0])

break;
}

}
}

}
This code is included in §489.

Recovering from an error changes in the same way. We ascend from the node where
we were copying when memory ran out and set the right children of the nodes where we
ascended to the right to null pointers, then destroy the fixed-up tree:

§510 〈PBST copy error helper function 510 〉 ≡
static void copy error recovery (struct pbst node ∗q ,

struct pbst table ∗new , pbst item func ∗destroy) {
assert (q != NULL && new != NULL);
for (;;) {

struct pbst node ∗p = q ;
q = q→pbst parent ;
if (q == NULL)

Chapter 13: BSTs with Parent Pointers 289

break;
if (p == q→pbst link [0])

q→pbst link [1] = NULL;
}
pbst destroy (new , destroy);

}
This code is included in §509 and §547.

13.7 Balance

We can balance a PBST in the same way that we would balance a BST without parent
pointers. In fact, we’ll use the same code, with the only change omitting only the maximum
height check. This code doesn’t set parent pointers, so afterward we traverse the tree to
take care of that.

Here are the pieces of the core code that need to be repeated:
§511 〈PBST balance function 511 〉 ≡

〈BST to vine function; bst ⇒ pbst 89 〉
〈Vine to balanced PBST function 512 〉
〈Update parent pointers function 514 〉
void pbst balance (struct pbst table ∗tree) {

assert (tree != NULL);
tree to vine (tree);
vine to tree (tree);
update parents (tree);

}
This code is included in §489.

§512 〈Vine to balanced PBST function 512 〉 ≡
〈BST compression function; bst ⇒ pbst 95 〉
static void vine to tree (struct pbst table ∗tree) {

unsigned long vine; /∗ Number of nodes in main vine. ∗/
unsigned long leaves; /∗ Nodes in incomplete bottom level, if any. ∗/
int height ; /∗ Height of produced balanced tree. ∗/
〈Calculate leaves; bst ⇒ pbst 91 〉
〈Reduce vine general case to special case; bst ⇒ pbst 92 〉
〈Make special case vine into balanced tree and count height; bst ⇒ pbst 93 〉

}
This code is included in §511.

§513 〈PBST extra function prototypes 513 〉 ≡
/∗ Special PBST functions. ∗/
void pbst balance (struct pbst table ∗tree);

Updating Parent Pointers

The procedure for rebalancing a binary tree leaves the nodes’ parent pointers pointing
every which way. Now we’ll fix them. Incidentally, this is a general procedure, so the same

290 GNU libavl 2.0.1

code could be used in other situations where we have a tree to which we want to add parent
pointers.

The procedure takes the same form as an inorder traversal, except that there is nothing
to do in the place where we would normally visit the node. Instead, every time we move
down to the left or the right, we set the parent pointer of the node we move to.

The code is straightforward enough. The basic strategy is to always move down to the
left when possible; otherwise, move down to the right if possible; otherwise, repeatedly move
up until we’ve moved up to the left to arrive at a node with a right child, then move to that
right child.

§514 〈Update parent pointers function 514 〉 ≡
static void update parents (struct pbst table ∗tree) {

struct pbst node ∗p;
if (tree→pbst root == NULL)

return;
tree→pbst root→pbst parent = NULL;
for (p = tree→pbst root ; ; p = p→pbst link [1]) {

for (; p→pbst link [0] != NULL; p = p→pbst link [0])
p→pbst link [0]→pbst parent = p;

for (; p→pbst link [1] == NULL; p = p→pbst parent) {
for (;;) {

if (p→pbst parent == NULL)
return;

if (p == p→pbst parent→pbst link [0])
break;

p = p→pbst parent ;
}

}
p→pbst link [1]→pbst parent = p;

}
}
This code is included in §511.

Exercises:

1. There is another approach to updating parent pointers: we can do it during the com-
pressions. Implement this approach. Make sure not to miss any pointers.

13.8 Testing

§515 〈 pbst-test.c 515 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “pbst.h”
#include “test.h”

Chapter 13: BSTs with Parent Pointers 291

〈BST print function; bst ⇒ pbst 119 〉
〈BST traverser check function; bst ⇒ pbst 104 〉
〈Compare two PBSTs for structure and content 516 〉
〈Recursively verify PBST structure 517 〉
〈BST verify function; bst ⇒ pbst 109 〉
〈TBST test function; tbst ⇒ pbst 295 〉
〈BST overflow test function; bst ⇒ pbst 122 〉

§516 〈Compare two PBSTs for structure and content 516 〉 ≡
static int compare trees (struct pbst node ∗a, struct pbst node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

assert (a == NULL && b == NULL);
return 1;

}
if (∗(int ∗) a→pbst data != ∗(int ∗) b→pbst data
|| ((a→pbst link [0] != NULL) != (b→pbst link [0] != NULL))
|| ((a→pbst link [1] != NULL) != (b→pbst link [1] != NULL))
|| ((a→pbst parent != NULL) != (b→pbst parent != NULL))
|| (a→pbst parent != NULL && b→pbst parent != NULL

&& a→pbst parent→pbst data != b→pbst parent→pbst data)) {
printf ("ÃCopiedÃnodesÃdiffer:\n"

"ÃÃa:Ã%d,ÃparentÃ%d,Ã%sÃleftÃchild,Ã%sÃrightÃchild\n"
"ÃÃb:Ã%d,ÃparentÃ%d,Ã%sÃleftÃchild,Ã%sÃrightÃchild\n",
∗(int ∗) a→pbst data,
a→pbst parent != NULL ? ∗(int ∗) a→pbst parent : −1,
a→pbst link [0] != NULL ? "has" : "no",
a→pbst link [1] != NULL ? "has" : "no",
∗(int ∗) b→pbst data,
b→pbst parent != NULL ? ∗(int ∗) b→pbst parent : −1,
b→pbst link [0] != NULL ? "has" : "no",
b→pbst link [1] != NULL ? "has" : "no");

return 0;
}
okay = 1;
if (a→pbst link [0] != NULL)

okay &= compare trees (a→pbst link [0], b→pbst link [0]);
if (a→pbst link [1] != NULL)

okay &= compare trees (a→pbst link [1], b→pbst link [1]);
return okay ;

}
This code is included in §515.

§517 〈Recursively verify PBST structure 517 〉 ≡
static void recurse verify tree (struct pbst node ∗node, int ∗okay , size t ∗count ,

int min, int max) {
int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/

292 GNU libavl 2.0.1

int i ;
if (node == NULL) {

∗count = 0;
return;

}
d = ∗(int ∗) node→pbst data;
〈Verify binary search tree ordering 114 〉
recurse verify tree (node→pbst link [0], okay , &subcount [0], min, d − 1);
recurse verify tree (node→pbst link [1], okay , &subcount [1], d + 1, max);
∗count = 1 + subcount [0] + subcount [1];
〈Verify PBST node parent pointers 518 〉

}
This code is included in §515.

§518 〈Verify PBST node parent pointers 518 〉 ≡
for (i = 0; i < 2; i++) {

if (node→pbst link [i] != NULL && node→pbst link [i]→pbst parent != node) {
printf ("ÃNodeÃ%dÃhasÃparentÃ%dÃ(shouldÃbeÃ%d).\n",

∗(int ∗) node→pbst link [i]→pbst data,
(node→pbst link [i]→pbst parent != NULL
? ∗(int ∗) node→pbst link [i]→pbst parent→pbst data : −1),

d);
∗okay = 0;

}
}
This code is included in §517, §550, and §585.

Chapter 14: AVL Trees with Parent Pointers 293

14 AVL Trees with Parent Pointers

This chapter adds parent pointers to AVL trees. The result is a data structure that
combines the strengths of AVL trees and trees with parent pointers. Of course, there’s no
free lunch: it combines their disadvantages, too.

The abbreviation we’ll use for the term "AVL tree with parent pointers” is “PAVL tree”,
with corresponding prefix pavl . Here’s the outline for the PAVL table implementation:

§519 〈 pavl.h 519 〉 ≡
〈License 1 〉
#ifndef PAVL_H
#define PAVL_H 1

#include 〈 stddef.h 〉
〈Table types; tbl ⇒ pavl 14 〉
〈BST maximum height; bst ⇒ pavl 28 〉
〈TBST table structure; tbst ⇒ pavl 250 〉
〈PAVL node structure 521 〉
〈TBST traverser structure; tbst ⇒ pavl 267 〉
〈Table function prototypes; tbl ⇒ pavl 15 〉
#endif /∗ pavl.h ∗/

§520 〈 pavl.c 520 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “pavl.h”

〈PAVL functions 522 〉

14.1 Data Types

A PAVL tree node has a parent pointer and an AVL balance field in addition to the
usual members needed for any binary search tree:

§521 〈PAVL node structure 521 〉 ≡
/∗ An PAVL tree node. ∗/
struct pavl node {

struct pavl node ∗pavl link [2]; /∗ Subtrees. ∗/
struct pavl node ∗pavl parent ; /∗ Parent node. ∗/
void ∗pavl data; /∗ Pointer to data. ∗/
signed char pavl balance; /∗ Balance factor. ∗/

};
This code is included in §519.

The other data structures are the same as the corresponding ones for TBSTs.

294 GNU libavl 2.0.1

14.2 Rotations

Let’s consider how rotations work in PBSTs. Here’s the usual illustration of a rotation:

a

X

b

Y

c ⇔ a

X

b

Y

c

As we move from the left side to the right side, rotating right at Y , the parents of up
to three nodes change. In any case, Y ’s former parent becomes X ’s new parent and X
becomes Y ’s new parent. In addition, if b is not an empty subtree, then the parent of
subtree b’s root node becomes Y . Moving from right to left, the situation is reversed.
See also: [Cormen 1990], section 14.2.

Exercises:

1. Write functions for right and left rotations in BSTs with parent pointers, analogous to
those for plain BSTs developed in Exercise 4.3-2.

14.3 Operations

As usual, we must reimplement the item insertion and deletion functions. The tree copy
function and some of the traversal functions also need to be rewritten.

§522 〈PAVL functions 522 〉 ≡
〈TBST creation function; tbst ⇒ pavl 252 〉
〈BST search function; bst ⇒ pavl 31 〉
〈PAVL item insertion function 523 〉
〈Table insertion convenience functions; tbl ⇒ pavl 592 〉
〈PAVL item deletion function 534 〉
〈PAVL traversal functions 546 〉
〈PAVL copy function 547 〉
〈BST destruction function; bst ⇒ pavl 84 〉
〈Default memory allocation functions; tbl ⇒ pavl 6 〉
〈Table assertion functions; tbl ⇒ pavl 594 〉
This code is included in §520.

14.4 Insertion

The same basic algorithm has been used for insertion in all of our AVL tree variants
so far. (In fact, all three functions share the same set of local variables.) For PAVL trees,
we will slightly modify our approach. In particular, until now we have cached comparison
results on the way down in order to quickly adjust balance factors after the insertion. Parent
pointers let us avoid this caching but still efficiently update balance factors.

Before we look closer, here is the function’s outline:
§523 〈PAVL item insertion function 523 〉 ≡

void ∗∗pavl probe (struct pavl table ∗tree, void ∗item) {

Chapter 14: AVL Trees with Parent Pointers 295

struct pavl node ∗y ; /∗ Top node to update balance factor, and parent. ∗/
struct pavl node ∗p, ∗q ; /∗ Iterator, and parent. ∗/
struct pavl node ∗n; /∗ Newly inserted node. ∗/
struct pavl node ∗w ; /∗ New root of rebalanced subtree. ∗/
int dir ; /∗ Direction to descend. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search PAVL tree for insertion point 524 〉
〈Step 2: Insert PAVL node 525 〉
〈Step 3: Update balance factors after PAVL insertion 526 〉
〈Step 4: Rebalance after PAVL insertion 527 〉

}
This code is included in §522.

14.4.1 Steps 1 and 2: Search and Insert

We search much as before. Despite use of the parent pointers, we preserve the use of q
as the parent of p because the termination condition is a value of NULL for p, and NULL has
no parent. (Thus, q is not, strictly speaking, always p’s parent, but rather the last node
examined before p.)

Because of parent pointers, there is no need for variable z , used in earlier implementations
of AVL insertion to maintain y ’s parent.

§524 〈Step 1: Search PAVL tree for insertion point 524 〉 ≡
y = tree→pavl root ;
for (q = NULL, p = tree→pavl root ; p != NULL; q = p, p = p→pavl link [dir]) {

int cmp = tree→pavl compare (item, p→pavl data, tree→pavl param);
if (cmp == 0)

return &p→pavl data;
dir = cmp > 0;
if (p→pavl balance != 0)

y = p;
}
This code is included in §523.

The node to create and insert the new node is based on that for PBSTs. There is a
special case for a node inserted into an empty tree:

§525 〈Step 2: Insert PAVL node 525 〉 ≡
〈Step 2: Insert PBST node; pbst ⇒ pavl 492 〉
n→pavl balance = 0;
if (tree→pavl root == n)

return &n→pavl data;
This code is included in §523.

14.4.2 Step 3: Update Balance Factors

Until now, in step 3 of insertion into AVL trees we’ve always updated balance factors
from the top down, starting at y and working our way down to n (see, e.g., 〈Step 3: Update

296 GNU libavl 2.0.1

balance factors after AVL insertion 150 〉). This approach was somewhat unnatural, but it
worked. The original reason we did it this way was that it was either impossible, as for
AVL and RTAVL trees, or slow, as for TAVL trees, to efficiently move upward in a tree.
That’s not a consideration anymore, so we can do it from the bottom up and in the process
eliminate the cache used before.

At each step, we need to know the node to update and, for that node, on which side of
its parent it is a child. In the code below, q is the node and dir is the side.

§526 〈Step 3: Update balance factors after PAVL insertion 526 〉 ≡
for (p = n; p != y ; p = q) {

q = p→pavl parent ;
dir = q→pavl link [0] != p;
if (dir == 0)

q→pavl balance−−;
else q→pavl balance++;

}
This code is included in §523.

Exercises:

1. Does this step 3 update the same set of balance factors as would a literal adaptation of
〈Step 3: Update balance factors after AVL insertion 150 〉?
2. Would it be acceptable to substitute q→pavl link [1] == p for q→pavl link [0] != p in the
code segment above?

14.4.3 Step 4: Rebalance

The changes needed to the rebalancing code for parent pointers resemble the changes
for threads in that we can reuse most of the code from plain AVL trees. We just need to
add a few new statements to each rebalancing case to adjust the parent pointers of nodes
whose parents have changed.

The outline of the rebalancing code should be familiar by now. The code to update the
link to the root of the rebalanced subtree is the only change. It needs a special case for
the root, because the parent pointer of the root node is a null pointer, not the pseudo-root
node. The other choice would simplify this piece of code, but complicate other pieces (see
Section 13.1 [PBST Data Types], page 278).

§527 〈Step 4: Rebalance after PAVL insertion 527 〉 ≡
if (y→pavl balance == −2)

{ 〈Rebalance PAVL tree after insertion in left subtree 528 〉 }
else if (y→pavl balance == +2)

{ 〈Rebalance PAVL tree after insertion in right subtree 531 〉 }
else return &n→pavl data;
if (w→pavl parent != NULL)

w→pavl parent→pavl link [y != w→pavl parent→pavl link [0]] = w ;
else tree→pavl root = w ;
return &n→pavl data;
This code is included in §523.

Chapter 14: AVL Trees with Parent Pointers 297

As usual, the cases for rebalancing are distinguished based on the balance factor of the
child of the unbalanced node on its taller side:

§528 〈Rebalance PAVL tree after insertion in left subtree 528 〉 ≡
struct pavl node ∗x = y→pavl link [0];
if (x→pavl balance == −1)

{ 〈Rebalance for − balance factor in PAVL insertion in left subtree 529 〉 }
else { 〈Rebalance for + balance factor in PAVL insertion in left subtree 530 〉 }
This code is included in §527.

Case 1: x has − balance factor

The added code here is exactly the same as that added to BST rotation to handle parent
pointers (in Exercise 14.2-1), and for good reason since this case simply performs a right
rotation in the PAVL tree.

§529 〈Rebalance for − balance factor in PAVL insertion in left subtree 529 〉 ≡
〈Rotate right at y in AVL tree; avl ⇒ pavl 155 〉
x→pavl parent = y→pavl parent ;
y→pavl parent = x ;
if (y→pavl link [0] != NULL)

y→pavl link [0]→pavl parent = y ;
This code is included in §528.

Case 2: x has + balance factor

When x has a + balance factor, we need a double rotation, composed of a right rotation
at x followed by a left rotation at y . The diagram below show the effect of each of the
rotations:

a

+x

b

w

c

--y

d ⇒

a

x

b

w

c

-- y

d ⇒

a

x

b

0 w

c

y

d

Along with this double rotation comes a small bulk discount in parent pointer assign-
ments. The parent of w changes in both rotations, but we only need assign to it its final
value once, ignoring the intermediate value.

§530 〈Rebalance for + balance factor in PAVL insertion in left subtree 530 〉 ≡
〈Rotate left at x then right at y in AVL tree; avl ⇒ pavl 156 〉
w→pavl parent = y→pavl parent ;
x→pavl parent = y→pavl parent = w ;
if (x→pavl link [1] != NULL)

x→pavl link [1]→pavl parent = x ;
if (y→pavl link [0] != NULL)

y→pavl link [0]→pavl parent = y ;
This code is included in §528 and §544.

298 GNU libavl 2.0.1

14.4.4 Symmetric Case

§531 〈Rebalance PAVL tree after insertion in right subtree 531 〉 ≡
struct pavl node ∗x = y→pavl link [1];
if (x→pavl balance == +1)

{ 〈Rebalance for + balance factor in PAVL insertion in right subtree 532 〉 }
else { 〈Rebalance for − balance factor in PAVL insertion in right subtree 533 〉 }
This code is included in §527.

§532 〈Rebalance for + balance factor in PAVL insertion in right subtree 532 〉 ≡
〈Rotate left at y in AVL tree; avl ⇒ pavl 158 〉
x→pavl parent = y→pavl parent ;
y→pavl parent = x ;
if (y→pavl link [1] != NULL)

y→pavl link [1]→pavl parent = y ;

This code is included in §531.

§533 〈Rebalance for − balance factor in PAVL insertion in right subtree 533 〉 ≡
〈Rotate right at x then left at y in AVL tree; avl ⇒ pavl 159 〉
w→pavl parent = y→pavl parent ;
x→pavl parent = y→pavl parent = w ;
if (x→pavl link [0] != NULL)

x→pavl link [0]→pavl parent = x ;
if (y→pavl link [1] != NULL)

y→pavl link [1]→pavl parent = y ;

This code is included in §531 and §541.

14.5 Deletion

Deletion from a PAVL tree is a natural outgrowth of algorithms we have already imple-
mented. The basic algorithm is the one originally used for plain AVL trees. The search
step is taken verbatim from PBST deletion. The deletion step combines PBST and TAVL
tree code. Finally, the rebalancing strategy is the same as used in TAVL deletion.

The function outline is below. As noted above, step 1 is borrowed from PBST deletion.
The other steps are implemented in the following sections.

§534 〈PAVL item deletion function 534 〉 ≡
void ∗pavl delete (struct pavl table ∗tree, const void ∗item) {

struct pavl node ∗p; /∗ Traverses tree to find node to delete. ∗/
struct pavl node ∗q ; /∗ Parent of p. ∗/
int dir ; /∗ Side of q on which p is linked. ∗/
assert (tree != NULL && item != NULL);

〈Step 1: Find PBST node to delete; pbst ⇒ pavl 494 〉
〈Step 2: Delete item from PAVL tree 535 〉
〈Steps 3 and 4: Update balance factors and rebalance after PAVL deletion 539 〉

}
This code is included in §522.

Chapter 14: AVL Trees with Parent Pointers 299

14.5.1 Step 2: Delete

The actual deletion step is derived from that for PBSTs. We add code to modify balance
factors and set up for rebalancing. After the deletion, q is the node at which balance factors
must be updated and possible rebalancing occurs and dir is the side of q from which the
node was deleted. This follows the pattern already seen in TAVL deletion (see Section 8.5.2
[Deleting a TAVL Node Step 2 - Delete], page 198).

§535 〈Step 2: Delete item from PAVL tree 535 〉 ≡
if (p→pavl link [1] == NULL)

{ 〈Case 1 in PAVL deletion 536 〉 }
else {

struct pavl node ∗r = p→pavl link [1];
if (r→pavl link [0] == NULL)

{ 〈Case 2 in PAVL deletion 537 〉 }
else { 〈Case 3 in PAVL deletion 538 〉 }

}
tree→pavl alloc→libavl free (tree→pavl alloc, p);
This code is included in §534.

Case 1: p has no right child

No changes are needed for case 1. No balance factors need change and q and dir are
already set up correctly.

§536 〈Case 1 in PAVL deletion 536 〉 ≡
〈Case 1 in PBST deletion; pbst ⇒ pavl 497 〉
This code is included in §535.

Case 2: p’s right child has no left child

See the commentary on 〈Case 3 in TAVL deletion 316 〉 for details.
§537 〈Case 2 in PAVL deletion 537 〉 ≡

〈Case 2 in PBST deletion; pbst ⇒ pavl 498 〉
r→pavl balance = p→pavl balance;
q = r ;
dir = 1;
This code is included in §535.

Case 3: p’s right child has a left child

See the commentary on 〈Case 4 in TAVL deletion 317 〉 for details.
§538 〈Case 3 in PAVL deletion 538 〉 ≡

〈Case 3 in PBST deletion; pbst ⇒ pavl 499 〉
s→pavl balance = p→pavl balance;
q = r ;
dir = 0;
This code is included in §535.

300 GNU libavl 2.0.1

14.5.2 Step 3: Update Balance Factors

Step 3, updating balance factors, is taken straight from TAVL deletion (see Section 8.5.3
[Deleting a TAVL Node Step 3 - Update], page 199), with the call to find parent() replaced
by inline code that uses pavl parent .

§539 〈Steps 3 and 4: Update balance factors and rebalance after PAVL deletion 539 〉 ≡
while (q != (struct pavl node ∗) &tree→pavl root) {

struct pavl node ∗y = q ;

if (y→pavl parent != NULL)
q = y→pavl parent ;

else q = (struct pavl node ∗) &tree→pavl root ;

if (dir == 0) {
dir = q→pavl link [0] != y ;
y→pavl balance++;
if (y→pavl balance == +1)

break;
else if (y→pavl balance == +2)

{ 〈 Step 4: Rebalance after PAVL deletion 540 〉 }
}
else { 〈 Steps 3 and 4: Symmetric case in PAVL deletion 543 〉 }

}
tree→pavl count−−;
return (void ∗) item;

This code is included in §534.

14.5.3 Step 4: Rebalance

The two cases for PAVL deletion are distinguished based on x ’s balance factor, as always:

§540 〈Step 4: Rebalance after PAVL deletion 540 〉 ≡
struct pavl node ∗x = y→pavl link [1];
if (x→pavl balance == −1)

{ 〈Left-side rebalancing case 1 in PAVL deletion 541 〉 }
else { 〈Left-side rebalancing case 2 in PAVL deletion 542 〉 }
This code is included in §539.

Case 1: x has − balance factor

The same rebalancing is needed here as for a − balance factor in PAVL insertion, and
the same code is used.

§541 〈Left-side rebalancing case 1 in PAVL deletion 541 〉 ≡
struct pavl node ∗w ;

〈Rebalance for − balance factor in PAVL insertion in right subtree 533 〉
q→pavl link [dir] = w ;

This code is included in §540.

Chapter 14: AVL Trees with Parent Pointers 301

Case 2: x has + or 0 balance factor

If x has a + or 0 balance factor, we rotate left at y and update parent pointers as for
any left rotation (see Section 14.2 [PBST Rotations], page 294). We also update balance
factors. If x started with balance factor 0, then we’re done. Otherwise, x becomes the new
y for the next loop iteration, and rebalancing continues. See [avldel2], page 128, for details
on this rebalancing case.

§542 〈Left-side rebalancing case 2 in PAVL deletion 542 〉 ≡
y→pavl link [1] = x→pavl link [0];
x→pavl link [0] = y ;
x→pavl parent = y→pavl parent ;
y→pavl parent = x ;
if (y→pavl link [1] != NULL)

y→pavl link [1]→pavl parent = y ;
q→pavl link [dir] = x ;
if (x→pavl balance == 0) {

x→pavl balance = −1;
y→pavl balance = +1;
break;

} else {
x→pavl balance = y→pavl balance = 0;
y = x ;

}
This code is included in §540.

14.5.4 Symmetric Case

§543 〈Steps 3 and 4: Symmetric case in PAVL deletion 543 〉 ≡
dir = q→pavl link [0] != y ;
y→pavl balance−−;
if (y→pavl balance == −1)

break;
else if (y→pavl balance == −2) {

struct pavl node ∗x = y→pavl link [0];
if (x→pavl balance == +1)

{ 〈Right-side rebalancing case 1 in PAVL deletion 544 〉 }
else { 〈Right-side rebalancing case 2 in PAVL deletion 545 〉 }

}
This code is included in §539.

§544 〈Right-side rebalancing case 1 in PAVL deletion 544 〉 ≡
struct pavl node ∗w ;
〈Rebalance for + balance factor in PAVL insertion in left subtree 530 〉
q→pavl link [dir] = w ;
This code is included in §543.

§545 〈Right-side rebalancing case 2 in PAVL deletion 545 〉 ≡
y→pavl link [0] = x→pavl link [1];

302 GNU libavl 2.0.1

x→pavl link [1] = y ;
x→pavl parent = y→pavl parent ;
y→pavl parent = x ;
if (y→pavl link [0] != NULL)

y→pavl link [0]→pavl parent = y ;
q→pavl link [dir] = x ;
if (x→pavl balance == 0) {

x→pavl balance = +1;
y→pavl balance = −1;
break;

} else {
x→pavl balance = y→pavl balance = 0;
y = x ;

}
This code is included in §543.

14.6 Traversal

The only difference between PAVL and PBST traversal functions is the insertion initial-
izer. We use the TBST implementation here, which performs a call to pavl probe(), instead
of the PBST implementation, which inserts the node directly without handling node colors.

§546 〈PAVL traversal functions 546 〉 ≡
〈TBST traverser null initializer; tbst ⇒ pavl 269 〉
〈PBST traverser first initializer; pbst ⇒ pavl 503 〉
〈PBST traverser last initializer; pbst ⇒ pavl 504 〉
〈PBST traverser search initializer; pbst ⇒ pavl 505 〉
〈TBST traverser insertion initializer; tbst ⇒ pavl 273 〉
〈TBST traverser copy initializer; tbst ⇒ pavl 274 〉
〈PBST traverser advance function; pbst ⇒ pavl 507 〉
〈PBST traverser back up function; pbst ⇒ pavl 508 〉
〈BST traverser current item function; bst ⇒ pavl 74 〉
〈BST traverser replacement function; bst ⇒ pavl 75 〉
This code is included in §522 and §554.

14.7 Copying

The copy function is the same as 〈PBST copy function 509 〉, except that it copies
pavl balance between copied nodes.

§547 〈PAVL copy function 547 〉 ≡
〈PBST copy error helper function; pbst ⇒ pavl 510 〉
struct pavl table ∗pavl copy (const struct pavl table ∗org , pavl copy func ∗copy ,

pavl item func ∗destroy , struct libavl allocator ∗allocator) {
struct pavl table ∗new ;
const struct pavl node ∗x ;
struct pavl node ∗y ;

Chapter 14: AVL Trees with Parent Pointers 303

assert (org != NULL);
new = pavl create (org→pavl compare, org→pavl param,

allocator != NULL ? allocator : org→pavl alloc);
if (new == NULL)

return NULL;
new→pavl count = org→pavl count ;
if (new→pavl count == 0)

return new ;
x = (const struct pavl node ∗) &org→pavl root ;
y = (struct pavl node ∗) &new→pavl root ;
for (;;) {

while (x→pavl link [0] != NULL) {
y→pavl link [0] = new→pavl alloc→libavl malloc (new→pavl alloc,

sizeof ∗y→pavl link [0]);
if (y→pavl link [0] == NULL) {

if (y != (struct pavl node ∗) &new→pavl root) {
y→pavl data = NULL;
y→pavl link [1] = NULL;

}
copy error recovery (y , new , destroy);
return NULL;

}
y→pavl link [0]→pavl parent = y ;
x = x→pavl link [0];
y = y→pavl link [0];

}
y→pavl link [0] = NULL;
for (;;) {

y→pavl balance = x→pavl balance;
if (copy == NULL)

y→pavl data = x→pavl data;
else {

y→pavl data = copy (x→pavl data, org→pavl param);
if (y→pavl data == NULL) {

y→pavl link [1] = NULL;
copy error recovery (y , new , destroy);
return NULL;

}
}
if (x→pavl link [1] != NULL) {

y→pavl link [1] = new→pavl alloc→libavl malloc (new→pavl alloc,
sizeof ∗y→pavl link [1]);

if (y→pavl link [1] == NULL) {
copy error recovery (y , new , destroy);
return NULL;

}

304 GNU libavl 2.0.1

y→pavl link [1]→pavl parent = y ;
x = x→pavl link [1];
y = y→pavl link [1];
break;

}
else y→pavl link [1] = NULL;
for (;;) {

const struct pavl node ∗w = x ;
x = x→pavl parent ;
if (x == NULL) {

new→pavl root→pavl parent = NULL;
return new ;

}
y = y→pavl parent ;
if (w == x→pavl link [0])

break;
}

}
}

}
This code is included in §522 and §554.

14.8 Testing

The testing code harbors no surprises.
§548 〈 pavl-test.c 548 〉 ≡

〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “pavl.h”
#include “test.h”
〈BST print function; bst ⇒ pavl 119 〉
〈BST traverser check function; bst ⇒ pavl 104 〉
〈Compare two PAVL trees for structure and content 549 〉
〈Recursively verify PAVL tree structure 550 〉
〈AVL tree verify function; avl ⇒ pavl 190 〉
〈BST test function; bst ⇒ pavl 100 〉
〈BST overflow test function; bst ⇒ pavl 122 〉

§549 〈Compare two PAVL trees for structure and content 549 〉 ≡
/∗ Compares binary trees rooted at a and b,

making sure that they are identical. ∗/
static int compare trees (struct pavl node ∗a, struct pavl node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

Chapter 14: AVL Trees with Parent Pointers 305

assert (a == NULL && b == NULL);
return 1;

}
if (∗(int ∗) a→pavl data != ∗(int ∗) b→pavl data
|| ((a→pavl link [0] != NULL) != (b→pavl link [0] != NULL))
|| ((a→pavl link [1] != NULL) != (b→pavl link [1] != NULL))
|| ((a→pavl parent != NULL) != (b→pavl parent != NULL))
|| (a→pavl parent != NULL && b→pavl parent != NULL

&& a→pavl parent→pavl data != b→pavl parent→pavl data)
|| a→pavl balance != b→pavl balance) {
printf ("ÃCopiedÃnodesÃdiffer:\n"

"ÃÃa:Ã%d,ÃbalÃ%+d,ÃparentÃ%d,Ã%sÃleftÃchild,Ã%sÃrightÃchild\n"
"ÃÃb:Ã%d,ÃbalÃ%+d,ÃparentÃ%d,Ã%sÃleftÃchild,Ã%sÃrightÃchild\n",
∗(int ∗) a→pavl data, a→pavl balance,
a→pavl parent != NULL ? ∗(int ∗) a→pavl parent : −1,
a→pavl link [0] != NULL ? "has" : "no",
a→pavl link [1] != NULL ? "has" : "no",
∗(int ∗) b→pavl data, b→pavl balance,
b→pavl parent != NULL ? ∗(int ∗) b→pavl parent : −1,
b→pavl link [0] != NULL ? "has" : "no",
b→pavl link [1] != NULL ? "has" : "no");

return 0;
}
okay = 1;
if (a→pavl link [0] != NULL)

okay &= compare trees (a→pavl link [0], b→pavl link [0]);
if (a→pavl link [1] != NULL)

okay &= compare trees (a→pavl link [1], b→pavl link [1]);
return okay ;

}
This code is included in §548.

§550 〈Recursively verify PAVL tree structure 550 〉 ≡
static void recurse verify tree (struct pavl node ∗node, int ∗okay , size t ∗count ,

int min, int max , int ∗height) {
int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
int subheight [2]; /∗ Heights of subtrees. ∗/
int i ;

if (node == NULL) {
∗count = 0;
∗height = 0;
return;

}
d = ∗(int ∗) node→pavl data;

〈Verify binary search tree ordering 114 〉

306 GNU libavl 2.0.1

recurse verify tree (node→pavl link [0], okay , &subcount [0],
min, d − 1, &subheight [0]);

recurse verify tree (node→pavl link [1], okay , &subcount [1],
d + 1, max , &subheight [1]);

∗count = 1 + subcount [0] + subcount [1];
∗height = 1 + (subheight [0] > subheight [1] ? subheight [0] : subheight [1]);
〈Verify AVL node balance factor; avl ⇒ pavl 189 〉
〈Verify PBST node parent pointers; pbst ⇒ pavl 518 〉

}
This code is included in §548.

Chapter 15: Red-Black Trees with Parent Pointers 307

15 Red-Black Trees with Parent Pointers

As our twelfth and final example of a table data structure, this chapter will implement
a table as a red-black tree with parent pointers, or “PRB” tree for short. We use prb as
the prefix for identifiers. Here’s the outline:

§551 〈 prb.h 551 〉 ≡
〈License 1 〉
#ifndef PRB_H
#define PRB_H 1
#include 〈 stddef.h 〉
〈Table types; tbl ⇒ prb 14 〉
〈RB maximum height; rb ⇒ prb 195 〉
〈TBST table structure; tbst ⇒ prb 250 〉
〈PRB node structure 553 〉
〈TBST traverser structure; tbst ⇒ prb 267 〉
〈Table function prototypes; tbl ⇒ prb 15 〉
#endif /∗ prb.h ∗/

§552 〈 prb.c 552 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “prb.h”
〈PRB functions 554 〉

15.1 Data Types

The PRB node structure adds a color and a parent pointer to the basic binary tree data
structure. The other PRB data structures are the same as the ones used for TBSTs.

§553 〈PRB node structure 553 〉 ≡
/∗ Color of a red-black node. ∗/
enum prb color {

PRB_BLACK, /∗ Black. ∗/
PRB_RED /∗ Red. ∗/

};
/∗ A red-black tree with parent pointers node. ∗/
struct prb node {

struct prb node ∗prb link [2]; /∗ Subtrees. ∗/
struct prb node ∗prb parent ; /∗ Parent. ∗/
void ∗prb data; /∗ Pointer to data. ∗/
unsigned char prb color ; /∗ Color. ∗/

};
This code is included in §551.

See also: [Cormen 1990], section 14.1.

308 GNU libavl 2.0.1

15.2 Operations

Most of the PRB operations use the same implementations as did PAVL trees in the
last chapter. The PAVL copy function is modified to copy colors instead of balance factors.
The item insertion and deletion functions must be newly written, of course.

§554 〈PRB functions 554 〉 ≡
〈TBST creation function; tbst ⇒ prb 252 〉
〈BST search function; bst ⇒ prb 31 〉
〈PRB item insertion function 555 〉
〈Table insertion convenience functions; tbl ⇒ prb 592 〉
〈PRB item deletion function 566 〉
〈PAVL traversal functions; pavl ⇒ prb 546 〉
〈PAVL copy function; pavl ⇒ prb; pavl balance ⇒ prb color 547 〉
〈BST destruction function; bst ⇒ prb 84 〉
〈Default memory allocation functions; tbl ⇒ prb 6 〉
〈Table assertion functions; tbl ⇒ prb 594 〉
This code is included in §552.

15.3 Insertion

Inserting into a red-black tree is a problem whose form of solution should by now be
familiar to the reader. We must now update parent pointers, of course, but the major
difference here is that it is fast and easy to find the parent of any given node, eliminating
any need for a stack.

Here’s the function outline. The code for finding the insertion point is taken directly
from the PBST code:

§555 〈PRB item insertion function 555 〉 ≡
void ∗∗prb probe (struct prb table ∗tree, void ∗item) {

struct prb node ∗p; /∗ Traverses tree looking for insertion point. ∗/
struct prb node ∗q ; /∗ Parent of p; node at which we are rebalancing. ∗/
struct prb node ∗n; /∗ Newly inserted node. ∗/
int dir ; /∗ Side of q on which n is inserted. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search PBST tree for insertion point; pbst ⇒ prb 491 〉
〈Step 2: Insert PRB node 556 〉
〈Step 3: Rebalance after PRB insertion 557 〉
return &n→prb data;

}
This code is included in §554.

See also: [Cormen 1990], section 14.3.

15.3.1 Step 2: Insert

The code to do the insertion is based on that for PBSTs. We need only add initialization
of the new node’s color.

Chapter 15: Red-Black Trees with Parent Pointers 309

§556 〈Step 2: Insert PRB node 556 〉 ≡
〈Step 2: Insert PBST node; pbst ⇒ prb 492 〉
n→prb color = PRB_RED;
This code is included in §555.

15.3.2 Step 3: Rebalance

When we rebalanced ordinary RB trees, we used the expressions pa[k − 1] and pa[k − 2]
to refer to the parent and grandparent, respectively, of the node at which we were rebal-
ancing, and we called that node q , though that wasn’t a variable name (see Section 6.4.3
[Inserting an RB Node Step 3 - Rebalance], page 143). Now that we have parent pointers,
we use a real variable q to refer to the node where we’re rebalancing.

This means that we could refer to its parent and grandparent as q→prb parent and
q→prb parent→prb parent , respectively, but there’s a small problem with that. During
rebalancing, we will need to move nodes around and modify parent pointers. That means
that q→prb parent and q→prb parent→prb parent will be changing under us as we work.
This makes writing correct code hard, and reading it even harder. It is much easier to use
a pair of new variables to hold q ’s parent and grandparent.

That’s exactly the role that f and g , respectively, play in the code below. If you compare
this code to 〈Step 3: Rebalance after RB insertion 201 〉, you’ll also notice the way that
checking that f and g are non-null corresponds to checking that the stack height is at least
3 (see Exercise 6.4.3-1 for an explanation of the reason this is a valid test).

§557 〈Step 3: Rebalance after PRB insertion 557 〉 ≡
q = n;
for (;;) {

struct prb node ∗f ; /∗ Parent of q . ∗/
struct prb node ∗g ; /∗ Grandparent of q . ∗/
f = q→prb parent ;
if (f == NULL || f→prb color == PRB_BLACK)

break;
g = f→prb parent ;
if (g == NULL)

break;
if (g→prb link [0] == f)

{ 〈Left-side rebalancing after PRB insertion 558 〉 }
else { 〈Right-side rebalancing after PRB insertion 562 〉 } }

tree→prb root→prb color = PRB_BLACK;
This code is included in §555.

After replacing pa[k − 1] by f and pa[k − 2] by g , the cases for PRB rebalancing are
distinguished on the same basis as those for RB rebalancing (see 〈Left-side rebalancing after
RB insertion 202 〉). One addition: cases 2 and 3 need to work with q ’s great-grandparent,
so they stash it into a new variable h.

§558 〈Left-side rebalancing after PRB insertion 558 〉 ≡
struct prb node ∗y = g→prb link [1];
if (y != NULL && y→prb color == PRB_RED)

310 GNU libavl 2.0.1

{ 〈Case 1 in left-side PRB insertion rebalancing 559 〉 }
else {

struct prb node ∗h; /∗ Great-grandparent of q . ∗/
h = g→prb parent ;
if (h == NULL)

h = (struct prb node ∗) &tree→prb root ;
if (f→prb link [1] == q)

{ 〈Case 3 in left-side PRB insertion rebalancing 561 〉 }
〈Case 2 in left-side PRB insertion rebalancing 560 〉
break;

}
This code is included in §557.

Case 1: q ’s uncle is red

In this case, as before, we need only rearrange colors (see page 145). Instead of popping
the top two items off the stack, we directly set up q , the next node at which to rebalance,
to be the (former) grandparent of the original q .

a

q

b

f

c

g

d

y

e
⇒

a

q

b

f

c

g

d

y

e

§559 〈Case 1 in left-side PRB insertion rebalancing 559 〉 ≡
f→prb color = y→prb color = PRB_BLACK;
g→prb color = PRB_RED;
q = g ;
This code is included in §558.

Case 2: q is the left child of its parent

If q is the left child of its parent, we rotate right at g :

a

q

b

f

c

g

d ⇒

a

q

b

f

c

g

d

The result satisfies both RB balancing rules. Refer back to the discussion of the same case
in ordinary RB trees for more details (see page 145).

§560 〈Case 2 in left-side PRB insertion rebalancing 560 〉 ≡
g→prb color = PRB_RED;

Chapter 15: Red-Black Trees with Parent Pointers 311

f→prb color = PRB_BLACK;
g→prb link [0] = f→prb link [1];
f→prb link [1] = g ;
h→prb link [h→prb link [0] != g] = f ;
f→prb parent = g→prb parent ;
g→prb parent = f ;
if (g→prb link [0] != NULL)

g→prb link [0]→prb parent = g ;
This code is included in §558.

Case 3: q is the right child of its parent

If q is a right child, then we transform it into case 2 by rotating left at f :

a

f

b

q

c

g

d ⇒

a

f

b

q

c

g

d

Afterward we relabel q as f and treat the result as case 2. There is no need to properly
set q itself because case 2 never uses variable q . For more details, refer back to case 3 in
ordinary RB trees (see page 146).

§561 〈Case 3 in left-side PRB insertion rebalancing 561 〉 ≡
f→prb link [1] = q→prb link [0];
q→prb link [0] = f ;
g→prb link [0] = q ;
f→prb parent = q ;
if (f→prb link [1] != NULL)

f→prb link [1]→prb parent = f ;
f = q ;
This code is included in §558.

15.3.3 Symmetric Case

§562 〈Right-side rebalancing after PRB insertion 562 〉 ≡
struct prb node ∗y = g→prb link [0];
if (y != NULL && y→prb color == PRB_RED)

{ 〈Case 1 in right-side PRB insertion rebalancing 563 〉 }
else {

struct prb node ∗h; /∗ Great-grandparent of q . ∗/
h = g→prb parent ;
if (h == NULL)

h = (struct prb node ∗) &tree→prb root ;
if (f→prb link [0] == q)

312 GNU libavl 2.0.1

{ 〈Case 3 in right-side PRB insertion rebalancing 565 〉 }
〈Case 2 in right-side PRB insertion rebalancing 564 〉
break;

}
This code is included in §557.

§563 〈Case 1 in right-side PRB insertion rebalancing 563 〉 ≡
f→prb color = y→prb color = PRB_BLACK;
g→prb color = PRB_RED;
q = g ;
This code is included in §562.

§564 〈Case 2 in right-side PRB insertion rebalancing 564 〉 ≡
g→prb color = PRB_RED;
f→prb color = PRB_BLACK;
g→prb link [1] = f→prb link [0];
f→prb link [0] = g ;
h→prb link [h→prb link [0] != g] = f ;
f→prb parent = g→prb parent ;
g→prb parent = f ;
if (g→prb link [1] != NULL)

g→prb link [1]→prb parent = g ;
This code is included in §562.

§565 〈Case 3 in right-side PRB insertion rebalancing 565 〉 ≡
f→prb link [0] = q→prb link [1];
q→prb link [1] = f ;
g→prb link [1] = q ;
f→prb parent = q ;
if (f→prb link [0] != NULL)

f→prb link [0]→prb parent = f ;
f = q ;
This code is included in §562.

15.4 Deletion

The RB item deletion algorithm needs the same kind of changes to handle parent pointers
that the RB item insertion algorithm did. We can reuse the code from PBST trees for finding
the node to delete. The rest of the code will be presented in the following sections.

§566 〈PRB item deletion function 566 〉 ≡
void ∗prb delete (struct prb table ∗tree, const void ∗item) {

struct prb node ∗p; /∗ Node to delete. ∗/
struct prb node ∗q ; /∗ Parent of p. ∗/
struct prb node ∗f ; /∗ Node at which we are rebalancing. ∗/
int dir ; /∗ Side of q on which p is a child;

side of f from which node was deleted. ∗/
assert (tree != NULL && item != NULL);

Chapter 15: Red-Black Trees with Parent Pointers 313

〈Step 1: Find PBST node to delete; pbst ⇒ prb 494 〉
〈Step 2: Delete item from PRB tree 567 〉
〈Step 3: Rebalance tree after PRB deletion 571 〉
〈Step 4: Finish up after PRB deletion 577 〉

}
This code is included in §554.

See also: [Cormen 1990], section 14.4.

15.4.1 Step 2: Delete

The goal of this step is to remove p from the tree and set up f as the node where
rebalancing should start. Secondarily, we set dir as the side of f from which the node was
deleted. Together, f and dir fill the role that the top-of-stack entries in pa[] and da[] took
in ordinary RB deletion.

§567 〈Step 2: Delete item from PRB tree 567 〉 ≡
if (p→prb link [1] == NULL)

{ 〈Case 1 in PRB deletion 568 〉 }
else {

enum prb color t ;
struct prb node ∗r = p→prb link [1];
if (r→prb link [0] == NULL)

{ 〈Case 2 in PRB deletion 569 〉 }
else { 〈Case 3 in PRB deletion 570 〉 }

}
This code is included in §566.

Case 1: p has no right child

If p has no right child, then rebalancing should start at its parent, q , and dir is already
the side that p is on. The rest is the same as PBST deletion (see page 281).

§568 〈Case 1 in PRB deletion 568 〉 ≡
〈Case 1 in PBST deletion; pbst ⇒ prb 497 〉
f = q ;
This code is included in §567.

Case 2: p’s right child has no left child

In case 2, we swap the colors of p and r as for ordinary RB deletion (see page 152). We
set up f and dir in the same way that 〈Case 2 in RB deletion 223 〉 set up the top of stack.
The rest is the same as PBST deletion (see page 281).

§569 〈Case 2 in PRB deletion 569 〉 ≡
〈Case 2 in PBST deletion; pbst ⇒ prb 498 〉
t = p→prb color ;
p→prb color = r→prb color ;
r→prb color = t ;

314 GNU libavl 2.0.1

f = r ;
dir = 1;
This code is included in §567.

Case 3: p’s right child has a left child

Case 2 swaps the colors of p and s the same way as in ordinary RB deletion (see page 152),
and sets up f and dir in the same way that 〈Case 3 in RB deletion 224 〉 set up the stack.
The rest is borrowed from PBST deletion (see page 282).

§570 〈Case 3 in PRB deletion 570 〉 ≡
〈Case 3 in PBST deletion; pbst ⇒ prb 499 〉
t = p→prb color ;
p→prb color = s→prb color ;
s→prb color = t ;
f = r ;
dir = 0;
This code is included in §567.

15.4.2 Step 3: Rebalance

The rebalancing code is easily related to the analogous code for ordinary RB trees in
〈Rebalance after RB deletion 226 〉. As we carefully set up in step 2, we use f as the top
of stack node and dir as the side of f from which a node was deleted. These variables f
and dir were formerly represented by pa[k − 1] and da[k − 1], respectively. Additionally,
variable g is used to represent the parent of f . Formerly the same node was referred to as
pa[k − 2].

The code at the end of the loop simply moves f and dir up one level in the tree. It has
the same effect as did popping the stack with k−−.

§571 〈Step 3: Rebalance tree after PRB deletion 571 〉 ≡
if (p→prb color == PRB_BLACK) {

for (;;) {
struct prb node ∗x ; /∗ Node we want to recolor black if possible. ∗/
struct prb node ∗g ; /∗ Parent of f . ∗/
struct prb node ∗t ; /∗ Temporary for use in finding parent. ∗/
x = f→prb link [dir];
if (x != NULL && x→prb color == PRB_RED)

{
x→prb color = PRB_BLACK;
break;

}
if (f == (struct prb node ∗) &tree→prb root)

break;
g = f→prb parent ;
if (g == NULL)

g = (struct prb node ∗) &tree→prb root ;

Chapter 15: Red-Black Trees with Parent Pointers 315

if (dir == 0)
{ 〈Left-side rebalancing after PRB deletion 572 〉 }

else { 〈Right-side rebalancing after PRB deletion 578 〉 }
t = f ;
f = f→prb parent ;
if (f == NULL)

f = (struct prb node ∗) &tree→prb root ;
dir = f→prb link [0] != t ;

}
}
This code is included in §566.

The code to distinguish rebalancing cases in PRB trees is almost identical to 〈Left-side
rebalancing after RB deletion 227 〉.

§572 〈Left-side rebalancing after PRB deletion 572 〉 ≡
struct prb node ∗w = f→prb link [1];
if (w→prb color == PRB_RED)

{ 〈Ensure w is black in left-side PRB deletion rebalancing 573 〉 }
if ((w→prb link [0] == NULL || w→prb link [0]→prb color == PRB_BLACK)

&& (w→prb link [1] == NULL || w→prb link [1]→prb color == PRB_BLACK))
{ 〈Case 1 in left-side PRB deletion rebalancing 574 〉 }

else {
if (w→prb link [1] == NULL || w→prb link [1]→prb color == PRB_BLACK)

{ 〈Transform left-side PRB deletion rebalancing case 3 into case 2 576 〉 }
〈Case 2 in left-side PRB deletion rebalancing 575 〉
break;

}
This code is included in §571.

Case Reduction: Ensure w is black

The case reduction code is much like that for plain RB trees (see page 155), with
pa[k − 1] replaced by f and pa[k − 2] replaced by g . Instead of updating the stack, we
change g . Node f need not change because it’s already what we want it to be. We also
need to update parent pointers for the rotation.

x

Af

a

B

b

C w

c

D

d

⇒
x

Af

a

B w

b

C g

c

D

d

§573 〈Ensure w is black in left-side PRB deletion rebalancing 573 〉 ≡
w→prb color = PRB_BLACK;
f→prb color = PRB_RED;
f→prb link [1] = w→prb link [0];

316 GNU libavl 2.0.1

w→prb link [0] = f ;
g→prb link [g→prb link [0] != f] = w ;
w→prb parent = f→prb parent ;
f→prb parent = w ;
g = w ;
w = f→prb link [1];
w→prb parent = f ;
This code is included in §572.

Case 1: w has no red children

Case 1 is trivial. No changes from ordinary RB trees are necessary (see page 156).
§574 〈Case 1 in left-side PRB deletion rebalancing 574 〉 ≡

〈Case 1 in left-side RB deletion rebalancing; rb ⇒ prb 229 〉
This code is included in §572.

Case 2: w ’s right child is red

The changes from ordinary RB trees (see page 157) for case 2 follow the same pattern.
§575 〈Case 2 in left-side PRB deletion rebalancing 575 〉 ≡

w→prb color = f→prb color ;
f→prb color = PRB_BLACK;
w→prb link [1]→prb color = PRB_BLACK;
f→prb link [1] = w→prb link [0];
w→prb link [0] = f ;
g→prb link [g→prb link [0] != f] = w ;
w→prb parent = f→prb parent ;
f→prb parent = w ;
if (f→prb link [1] != NULL)

f→prb link [1]→prb parent = f ;
This code is included in §572.

Case 3: w ’s left child is red

The code for case 3 in ordinary RB trees (see page 157) needs slightly more intricate
changes than case 1 or case 2, so the diagram below may help to clarify:

a

Ax

b

Bf

c

C

d

D w

e
⇒

a

Ax

b

Bf

c

C w

d

D

e

§576 〈Transform left-side PRB deletion rebalancing case 3 into case 2 576 〉 ≡
struct prb node ∗y = w→prb link [0];

Chapter 15: Red-Black Trees with Parent Pointers 317

y→prb color = PRB_BLACK;
w→prb color = PRB_RED;
w→prb link [0] = y→prb link [1];
y→prb link [1] = w ;
if (w→prb link [0] != NULL)

w→prb link [0]→prb parent = w ;
w = f→prb link [1] = y ;
w→prb link [1]→prb parent = w ;
This code is included in §572.

15.4.3 Step 4: Finish Up

§577 〈Step 4: Finish up after PRB deletion 577 〉 ≡
tree→prb alloc→libavl free (tree→prb alloc, p);
tree→prb count−−;
return (void ∗) item;
This code is included in §566.

15.4.4 Symmetric Case

§578 〈Right-side rebalancing after PRB deletion 578 〉 ≡
struct prb node ∗w = f→prb link [0];
if (w→prb color == PRB_RED)

{ 〈Ensure w is black in right-side PRB deletion rebalancing 579 〉 }
if ((w→prb link [0] == NULL || w→prb link [0]→prb color == PRB_BLACK)

&& (w→prb link [1] == NULL || w→prb link [1]→prb color == PRB_BLACK))
{ 〈Case 1 in right-side PRB deletion rebalancing 580 〉 }

else {
if (w→prb link [0] == NULL || w→prb link [0]→prb color == PRB_BLACK)

{ 〈Transform right-side PRB deletion rebalancing case 3 into case 2 582 〉 }
〈Case 2 in right-side PRB deletion rebalancing 581 〉
break;

}
This code is included in §571.

§579 〈Ensure w is black in right-side PRB deletion rebalancing 579 〉 ≡
w→prb color = PRB_BLACK;
f→prb color = PRB_RED;
f→prb link [0] = w→prb link [1];
w→prb link [1] = f ;
g→prb link [g→prb link [0] != f] = w ;
w→prb parent = f→prb parent ;
f→prb parent = w ;
g = w ;
w = f→prb link [0];
w→prb parent = f ;

318 GNU libavl 2.0.1

This code is included in §578.

§580 〈Case 1 in right-side PRB deletion rebalancing 580 〉 ≡
w→prb color = PRB_RED;
This code is included in §578.

§581 〈Case 2 in right-side PRB deletion rebalancing 581 〉 ≡
w→prb color = f→prb color ;
f→prb color = PRB_BLACK;
w→prb link [0]→prb color = PRB_BLACK;
f→prb link [0] = w→prb link [1];
w→prb link [1] = f ;
g→prb link [g→prb link [0] != f] = w ;
w→prb parent = f→prb parent ;
f→prb parent = w ;
if (f→prb link [0] != NULL)

f→prb link [0]→prb parent = f ;
This code is included in §578.

§582 〈Transform right-side PRB deletion rebalancing case 3 into case 2 582 〉 ≡
struct prb node ∗y = w→prb link [1];
y→prb color = PRB_BLACK;
w→prb color = PRB_RED;
w→prb link [1] = y→prb link [0];
y→prb link [0] = w ;
if (w→prb link [1] != NULL)

w→prb link [1]→prb parent = w ;
w = f→prb link [0] = y ;
w→prb link [0]→prb parent = w ;
This code is included in §578.

15.5 Testing

No comment is necessary.
§583 〈 prb-test.c 583 〉 ≡

〈License 1 〉
#include 〈 assert.h 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include “prb.h”
#include “test.h”
〈BST print function; bst ⇒ prb 119 〉
〈BST traverser check function; bst ⇒ prb 104 〉
〈Compare two PRB trees for structure and content 584 〉
〈Recursively verify PRB tree structure 585 〉
〈RB tree verify function; rb ⇒ prb 244 〉
〈BST test function; bst ⇒ prb 100 〉
〈BST overflow test function; bst ⇒ prb 122 〉

Chapter 15: Red-Black Trees with Parent Pointers 319

§584 〈Compare two PRB trees for structure and content 584 〉 ≡
static int compare trees (struct prb node ∗a, struct prb node ∗b) {

int okay ;
if (a == NULL || b == NULL) {

assert (a == NULL && b == NULL);
return 1;

}
if (∗(int ∗) a→prb data != ∗(int ∗) b→prb data
|| ((a→prb link [0] != NULL) != (b→prb link [0] != NULL))
|| ((a→prb link [1] != NULL) != (b→prb link [1] != NULL))
|| a→prb color != b→prb color) {
printf ("ÃCopiedÃnodesÃdiffer:Ãa=%d%cÃb=%d%cÃa:",

∗(int ∗) a→prb data, a→prb color == PRB_RED ? ’r’ : ’b’,
∗(int ∗) b→prb data, b→prb color == PRB_RED ? ’r’ : ’b’);

if (a→prb link [0] != NULL) printf ("l");
if (a→prb link [1] != NULL) printf ("r");
printf ("Ãb:");
if (b→prb link [0] != NULL) printf ("l");
if (b→prb link [1] != NULL) printf ("r");
printf ("\n");
return 0;

}
okay = 1;
if (a→prb link [0] != NULL)

okay &= compare trees (a→prb link [0], b→prb link [0]);
if (a→prb link [1] != NULL)

okay &= compare trees (a→prb link [1], b→prb link [1]);
return okay ;

}
This code is included in §583.

§585 〈Recursively verify PRB tree structure 585 〉 ≡
/∗ Examines the binary tree rooted at node.

Zeroes ∗okay if an error occurs. Otherwise, does not modify ∗okay .
Sets ∗count to the number of nodes in that tree, including node itself if node != NULL.
Sets ∗bh to the tree’s black-height.
All the nodes in the tree are verified to be at least min but no greater than max . ∗/

static void recurse verify tree (struct prb node ∗node, int ∗okay , size t ∗count ,
int min, int max , int ∗bh) {

int d ; /∗ Value of this node’s data. ∗/
size t subcount [2]; /∗ Number of nodes in subtrees. ∗/
int subbh[2]; /∗ Black-heights of subtrees. ∗/
int i ;
if (node == NULL) {

∗count = 0;
∗bh = 0;

320 GNU libavl 2.0.1

return;
}
d = ∗(int ∗) node→prb data;
〈Verify binary search tree ordering 114 〉
recurse verify tree (node→prb link [0], okay , &subcount [0],

min, d − 1, &subbh[0]);
recurse verify tree (node→prb link [1], okay , &subcount [1],

d + 1, max , &subbh[1]);
∗count = 1 + subcount [0] + subcount [1];
∗bh = (node→prb color == PRB_BLACK) + subbh[0];
〈Verify RB node color; rb ⇒ prb 241 〉
〈Verify RB node rule 1 compliance; rb ⇒ prb 242 〉
〈Verify RB node rule 2 compliance; rb ⇒ prb 243 〉
〈Verify PBST node parent pointers; pbst ⇒ prb 518 〉

}
This code is included in §583.

Appendix A: References 321

Appendix A References

[Aho 1986]. Aho, A. V., R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986. ISBN 0-201-10088-6.
[Bentley 2000]. Bentley, J., Programming Pearls, 2nd ed. Addison-Wesley, 2000. ISBN
0-201-65788-0.
[Brown 2001]. Brown, S., “Identifiers NOT To Use in C Programs”. Oak Road Systems,
Feb. 15, 2001. http://www.oakroadsystems.com/tech/c-predef.htm.
[Cormen 1990]. Cormen, C. H., C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. McGraw-Hill, 1990. ISBN 0-262-03141-8.
[FSF 1999]. Free Software Foundation, GNU C Library Reference Manual, version 0.08,
1999.
[FSF 2001]. Free Software Foundation, “GNU Coding Standards”, ed. of March 23, 2001.
[ISO 1990]. International Organization for Standardization, ANSI/ISO 9899-1990: Ameri-
can National Standard for Programming Languages—C, 1990. Reprinted in The Annotated
ANSI C Standard, ISBN 0-07-881952-0.
[ISO 1998]. International Organization for Standardization, ISO/IEC 14882:1998(E): Pro-
gramming languages—C++, 1998.
[ISO 1999]. International Orgnaization for Standardization, ISO/IEC 9899:1999: Program-
ming Languages—C, 2nd ed., 1999.
[Kernighan 1976]. Kernighan, B. W., and P. J. Plauger, Software Tools. Addison-Wesley,
1976. ISBN 0-201-03669-X.
[Kernighan 1988]. Kernighan, B. W., and D. M. Ritchie, The C Programming Language,
2nd ed. Prentice-Hall, 1988. ISBN 0-13-110362-8.
[Knuth 1997]. Knuth, D. E., The Art of Computer Programming, Volume 1: Fundamental
Algorithms, 3rd ed. Addison-Wesley, 1997. ISBN 0-201-89683-4.
[Knuth 1998a]. Knuth, D. E., The Art of Computer Programming, Volume 2: Seminumer-
ical Algorithms, 3rd ed. Addison-Wesley, 1998. ISBN 0-201-89684-2.
[Knuth 1998b]. Knuth, D. E., The Art of Computer Programming, Volume 3: Sorting and
Searching, 2nd ed. Addison-Wesley, 1998. ISBN 0-201-89685-0.
[Knuth 1977]. Knuth, D. E., “Deletions that Preserve Randomness”, IEEE Trans. on
Software Eng. SE-3 (1977), pp. 351–9. Reprinted in [Knuth 2000].
[Knuth 1978]. Knuth, D. E., “A Trivial Algorithm Whose Analysis Isn’t”, Journal of Al-
gorithms 6 (1985), pp. 301–22. Reprinted in [Knuth 2000].
[Knuth 1992]. Knuth, D. E., Literate Programming, CSLI Lecture Notes Number 27. Cen-
ter for the Study of Language and Information, Leland Stanford Junior University, 1992.
ISBN 0-9370-7380-6.
[Knuth 2000]. Knuth, D. E., Selected Papers on Analysis of Algorithms, CSLI Lecture
Notes Number 102. Center for the Study of Language and Information, Leland Stanford
Junior University, 2000. ISBN 1-57586-212-3.
[Pfaff 1998]. Pfaff, B. L., “An Iterative Algorithm for Deletion from AVL-Balanced Bi-
nary Trees”. Presented July 1998, annual meeting of Pi Mu Epsilon, Toronto, Canada.
http://benpfaff.org/avl/.

322 GNU libavl 2.0.1

[Sedgewick 1998]. Sedgewick, R., Algorithms in C, Parts 1-4, 3rd ed. Addison-Wesley,
1998. ISBN 0-201-31452-5.
[SGI 1993]. Silicon Graphics, Inc., Standard Template Library Programmer’s Guide.
http://www.sgi.com/tech/stl/.
[Stout 1986]. Stout, F. S. and B. L. Warren, “Tree Rebalancing in Optimal Time and
Space”, Communications of the ACM 29 (1986), pp. 902–908.
[Summit 1999]. Summit, S., “comp.lang.c Answers to Frequently Asked Questions”, version
3.5. http://www.eskimo.com/~scs/C-faq/top.html. ISBN 0-201-84519-9.

Appendix B: Supplementary Code 323

Appendix B Supplementary Code

This appendix contains code too long for the exposition or too far from the main topic
of the book.

B.1 Option Parser

The BST test program contains an option parser for handling command-line options.
See Section 4.14.5 [User Interaction], page 101, for an introduction to its public interface.
This section describes the option parser’s implementation.

The option parsing state is kept in struct option state:
§586 〈Option parser 586 〉 ≡

/∗ Option parsing state. ∗/
struct option state {

const struct option ∗options; /∗ List of options. ∗/
char ∗∗arg next ; /∗ Remaining arguments. ∗/
char ∗short next ; /∗ When non-null, unparsed short options. ∗/

};
See also §587 and §588.

This code is included in §97.

The initialization function just creates and returns one of these structures:
§587 〈Option parser 586 〉 +≡

/∗ Creates and returns a command-line options parser.
args is a null-terminated array of command-line arguments, not
including program name. ∗/

static struct option state ∗option init (const struct option ∗options, char ∗∗args) {
struct option state ∗state;
assert (options != NULL && args != NULL);
state = xmalloc (sizeof ∗state);
state→options = options;
state→arg next = args;
state→short next = NULL;
return state;

}
The option retrieval function uses a couple of helper functions. The code is lengthy, but

not complicated:
§588 〈Option parser 586 〉 +≡

/∗ Parses a short option whose single-character name is pointed to by
state→short next . Advances past the option so that the next one
will be parsed in the next call to option get(). Sets ∗argp to
the option’s argument, if any. Returns the option’s short name. ∗/

static int handle short option (struct option state ∗state, char ∗∗argp) {
const struct option ∗o;
assert (state != NULL && state→short next != NULL && ∗state→short next != ’\0’

324 GNU libavl 2.0.1

&& state→options != NULL);
/∗ Find option in o. ∗/
for (o = state→options; ; o++)

if (o→long name == NULL)
fail ("unknownÃoptionÃ‘-%c’;ÃuseÃ--helpÃforÃhelp", ∗state→short next);

else if (o→short name == ∗state→short next)
break;

state→short next++;
/∗ Handle argument. ∗/
if (o→has arg) {

if (∗state→arg next == NULL || ∗∗state→arg next == ’-’)
fail ("‘-%c’ÃrequiresÃanÃargument;ÃuseÃ--helpÃforÃhelp");

∗argp = ∗state→arg next++;
}
return o→short name;

}
/∗ Parses a long option whose command-line argument is pointed to by
∗state→arg next . Advances past the option so that the next one
will be parsed in the next call to option get(). Sets ∗argp to
the option’s argument, if any. Returns the option’s identifier. ∗/

static int handle long option (struct option state ∗state, char ∗∗argp) {
const struct option ∗o; /∗ Iterator on options. ∗/
char name[16]; /∗ Option name. ∗/
const char ∗arg ; /∗ Option argument. ∗/
assert (state != NULL && state→arg next != NULL && ∗state→arg next != NULL

&& state→options != NULL && argp != NULL);
/∗ Copy the option name into name

and put a pointer to its argument, or NULL if none, into arg . ∗/
{

const char ∗p = ∗state→arg next + 2;
const char ∗q = p + strcspn (p, "=");
size t name len = q − p;
if (name len > (sizeof name) − 1)

name len = (sizeof name) − 1;
memcpy (name, p, name len);
name[name len] = ’\0’;
arg = (∗q == ’=’) ? q + 1 : NULL;

}
/∗ Find option in o. ∗/
for (o = state→options; ; o++)

if (o→long name == NULL)
fail ("unknownÃoptionÃ--%s;ÃuseÃ--helpÃforÃhelp", name);

else if (!strcmp (name, o→long name))
break;

/∗ Make sure option has an argument if it should. ∗/

Appendix B: Supplementary Code 325

if ((arg != NULL) != (o→has arg != 0)) {
if (arg != NULL)

fail ("--%sÃcan’tÃtakeÃanÃargument;ÃuseÃ--helpÃforÃhelp", name);
else fail ("--%sÃrequiresÃanÃargument;ÃuseÃ--helpÃforÃhelp", name);

}
/∗ Advance and return. ∗/
state→arg next++;
∗argp = (char ∗) arg ;
return o→short name;

}
/∗ Retrieves the next option in the state vector state.

Returns the option’s identifier, or -1 if out of options.
Stores the option’s argument, or NULL if none, into ∗argp. ∗/

static int option get (struct option state ∗state, char ∗∗argp) {
assert (state != NULL && argp != NULL);

/∗ No argument by default. ∗/
∗argp = NULL;

/∗ Deal with left-over short options. ∗/
if (state→short next != NULL) {

if (∗state→short next != ’\0’)
return handle short option (state, argp);

else state→short next = NULL;
}
/∗ Out of options? ∗/
if (∗state→arg next == NULL) {

free (state);
return −1;

}
/∗ Non-option arguments not supported. ∗/
if ((∗state→arg next)[0] != ’-’)

fail ("non-optionÃargumentsÃencountered;ÃuseÃ--helpÃforÃhelp");
if ((∗state→arg next)[1] == ’\0’)

fail ("unknownÃoptionÃ‘-’;ÃuseÃ--helpÃforÃhelp");

/∗ Handle the option. ∗/
if ((∗state→arg next)[1] == ’-’)

return handle long option (state, argp);
else {

state→short next = ∗state→arg next + 1;
state→arg next++;
return handle short option (state, argp);

}
}

326 GNU libavl 2.0.1

B.2 Command-Line Parser

The option parser in the previous section handles the general form of command-line
options. The code in this section applies that option parser to the specific options used by
the BST test program. It has helper functions for argument parsing and advice to users.
Here is all of it together:

§589 〈Command line parser 589 〉 ≡
/∗ Command line parser. ∗/
/∗ If a is a prefix for b or vice versa, returns the length of the match.

Otherwise, returns 0. ∗/
size t match len (const char ∗a, const char ∗b) {

size t cnt ;
for (cnt = 0; ∗a == ∗b && ∗a != ’\0’; a++, b++)

cnt++;
return (∗a != ∗b && ∗a != ’\0’ && ∗b != ’\0’) ? 0 : cnt ;

}
/∗ s should point to a decimal representation of an integer.

Returns the value of s, if successful, or 0 on failure. ∗/
static int stoi (const char ∗s) {

long x = strtol (s, NULL, 10);
return x >= INT_MIN && x <= INT_MAX ? x : 0;

}
/∗ Print helpful syntax message and exit. ∗/
static void usage (void) {

static const char ∗help[] = {
"bst-test,ÃunitÃtestÃforÃGNUÃlibavl.\n\n",
"Usage:Ã%sÃ[OPTION]...\n\n",
"InÃtheÃoptionÃdescriptionsÃbelow,ÃCAPITALÃdenoteÃarguments.\n",
"IfÃaÃlongÃoptionÃshowsÃanÃargumentÃasÃmandatory,ÃthenÃitÃis\n",
"mandatoryÃforÃtheÃequivalentÃshortÃoptionÃalso.ÃÃSeeÃtheÃGNU\n",
"libavlÃmanualÃforÃmoreÃinformation.\n\n",
"-t,Ã--test=TESTÃÃÃÃÃSetsÃtestÃtoÃperform.ÃÃTESTÃisÃoneÃof:\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃcorrectnessÃinsert/delete/...Ã(default)\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃoverflowÃÃÃÃstackÃoverflowÃtest\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃbenchmarkÃÃÃbenchmarkÃtest\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃnullÃÃÃÃÃÃÃÃnoÃtest\n",
"-s,Ã--size=TREE-SIZEÃÃSetsÃtreeÃsizeÃinÃnodesÃ(defaultÃ16).\n",
"-r,Ã--repeat=COUNTÃÃRepeatsÃoperationÃCOUNTÃtimesÃ(defaultÃ16).\n",
"-i,Ã--insert=ORDERÃÃSetsÃtheÃinsertionÃorder.ÃÃORDERÃisÃoneÃof:\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃrandomÃÃÃÃÃÃrandomÃpermutationÃ(default)\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃascendingÃÃÃascendingÃorderÃ0...n-1\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃdescendingÃÃdescendingÃorderÃn-1...0\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃbalancedÃÃÃÃbalancedÃtreeÃorder\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃzigzagÃÃÃÃÃÃzig-zagÃtree\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃasc-shiftedÃn/2...n-1,Ã0...n/2-1\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃcustomÃÃÃÃÃÃcustom,ÃreadÃfromÃstdin\n",

Appendix B: Supplementary Code 327

"-d,Ã--delete=ORDERÃÃSetsÃtheÃdeletionÃorder.ÃÃORDERÃisÃoneÃof:\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃrandomÃÃÃrandomÃpermutationÃ(default)\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃreverseÃÃreverseÃorderÃofÃinsertion\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃsameÃÃÃÃÃsameÃasÃinsertionÃorder\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃcustomÃÃÃcustom,ÃreadÃfromÃstdin\n",
"-a,Ã--alloc=POLICYÃÃSetsÃallocationÃpolicy.ÃÃPOLICYÃisÃoneÃof:\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃtrackÃÃÃÃÃtrackÃmemoryÃleaksÃ(default)\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃno-trackÃÃturnÃoffÃleakÃdetection\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃfail-CNTÃÃfailÃafterÃCNTÃallocations\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃfail%%PCTÃÃfailÃrandomÃPCT%%ÃofÃallocations\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃsub-B,AÃÃÃdivideÃB-byteÃblocksÃinÃA-byteÃunits\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ(IgnoredÃforÃ‘benchmark’Ãtest.)\n",
"-A,Ã--incr=INCÃÃÃÃÃÃFailÃpolicies:ÃargÃincrementÃperÃrepetition.\n",
"-S,Ã--seed=SEEDÃÃÃÃÃSetsÃinitialÃnumberÃseedÃtoÃSEED.\n",
"ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ(defaultÃbasedÃonÃsystemÃtime)\n",
"-n,Ã--nonstopÃÃÃÃÃÃÃDon’tÃstopÃafterÃaÃsingleÃerror.\n",
"-q,Ã--quietÃÃÃÃÃÃÃÃÃTurnsÃdownÃverbosityÃlevel.\n",
"-v,Ã--verboseÃÃÃÃÃÃÃTurnsÃupÃverbosityÃlevel.\n",
"-h,Ã--helpÃÃÃÃÃÃÃÃÃÃDisplaysÃthisÃhelpÃscreen.\n",
"-V,Ã--versionÃÃÃÃÃÃÃReportsÃversionÃandÃcopyrightÃinformation.\n",
NULL,

};
const char ∗∗p;
for (p = help; ∗p != NULL; p++)

printf (∗p, pgm name);
exit (EXIT_SUCCESS);

}
/∗ Parses command-line arguments from null-terminated array args.

Sets up options appropriately to correspond. ∗/
static void parse command line (char ∗∗args, struct test options ∗options) {

static const struct option option tab[] = {
{"test", ’t’, 1}, {"insert", ’i’, 1}, {"delete", ’d’, 1},
{"alloc", ’a’, 1}, {"incr", ’A’, 1}, {"size", ’s’, 1},
{"repeat", ’r’, 1}, {"operation", ’o’, 1}, {"seed", ’S’, 1},
{"nonstop", ’n’, 0}, {"quiet", ’q’, 0}, {"verbose", ’v’, 0},
{"help", ’h’, 0}, {"version", ’V’, 0}, {NULL, 0, 0},

};
struct option state ∗state;
/∗ Default options. ∗/
options→test = TST_CORRECTNESS; options→insert order = INS_RANDOM;
options→delete order = DEL_RANDOM; options→alloc policy = MT_TRACK;
options→alloc arg [0] = 0; options→alloc arg [1] = 0;
options→alloc incr = 0; options→node cnt = 15;
options→iter cnt = 15; options→seed given = 0;
options→verbosity = 0; options→nonstop = 0;
if (∗args == NULL)

328 GNU libavl 2.0.1

return;
state = option init (option tab, args + 1);
for (;;) {

char ∗arg ;
int id = option get (state, &arg);
if (id == −1)

break;
switch (id) {

case ’t’:
if (match len (arg , "correctness") >= 3)

options→test = TST_CORRECTNESS;
else if (match len (arg , "overflow") >= 3)

options→test = TST_OVERFLOW;
else if (match len (arg , "null") >= 3)

options→test = TST_NULL;
else

fail ("unknownÃtestÃ\"%s\"", arg);
break;

case ’i’: {
static const char ∗orders[INS_CNT] = {

"random", "ascending", "descending",
"balanced", "zigzag", "asc-shifted", "custom",

};
const char ∗∗iter ;
assert (sizeof orders / sizeof ∗orders == INS_CNT);
for (iter = orders; ; iter++)

if (iter >= orders + INS_CNT)
fail ("unknownÃorderÃ\"%s\"", arg);

else if (match len (∗iter , arg) >= 3) {
options→insert order = iter − orders;
break;

}
}
break;

case ’d’: {
static const char ∗orders[DEL_CNT] = {

"random", "reverse", "same", "custom",
};
const char ∗∗iter ;
assert (sizeof orders / sizeof ∗orders == DEL_CNT);
for (iter = orders; ; iter++)

if (iter >= orders + DEL_CNT)
fail ("unknownÃorderÃ\"%s\"", arg);

else if (match len (∗iter , arg) >= 3) {
options→delete order = iter − orders;

Appendix B: Supplementary Code 329

break;
}

}
break;

case ’a’:
if (match len (arg , "track") >= 3)

options→alloc policy = MT_TRACK;
else if (match len (arg , "no-track") >= 3)

options→alloc policy = MT_NO_TRACK;
else if (!strncmp (arg , "fail", 3)) {

const char ∗p = arg + strcspn (arg , "-%");
if (∗p == ’-’) options→alloc policy = MT_FAIL_COUNT;
else if (∗p == ’%’) options→alloc policy = MT_FAIL_PERCENT;
else fail ("invalidÃallocationÃpolicyÃ\"%s\"", arg);

options→alloc arg [0] = stoi (p + 1);
}
else if (!strncmp (arg , "suballoc", 3)) {

const char ∗p = strchr (arg , ’-’);
const char ∗q = strchr (arg , ’,’);
if (p == NULL || q == NULL)

fail ("invalidÃallocationÃpolicyÃ\"%s\"", arg);

options→alloc policy = MT_SUBALLOC;
options→alloc arg [0] = stoi (p + 1);
options→alloc arg [1] = stoi (q + 1);
if (options→alloc arg [MT_BLOCK_SIZE] < 32)

fail ("blockÃsizeÃtooÃsmall");
else if (options→alloc arg [MT_ALIGN]

> options→alloc arg [MT_BLOCK_SIZE])
fail ("alignmentÃcannotÃbeÃgreaterÃthanÃblockÃsize");

else if (options→alloc arg [MT_ALIGN] < 1)
fail ("alignmentÃmustÃbeÃatÃleastÃ1");

}
break;

case ’A’: options→alloc incr = stoi (arg); break;

case ’s’:
options→node cnt = stoi (arg);
if (options→node cnt < 1)

fail ("badÃtreeÃsizeÃ\"%s\"", arg);
break;

case ’r’:
options→iter cnt = stoi (arg);
if (options→iter cnt < 1)

fail ("badÃrepeatÃcountÃ\"%s\"", arg);
break;

case ’S’:

330 GNU libavl 2.0.1

options→seed given = 1;
options→seed = strtoul (arg , NULL, 0);
break;

case ’n’: options→nonstop = 1; break;
case ’q’: options→verbosity−−; break;
case ’v’: options→verbosity++; break;
case ’h’: usage (); break;
case ’V’:

fputs ("GNUÃlibavlÃ2.0.1\n"
"CopyrightÃ(C)Ã1998-2002ÃFreeÃSoftwareÃFoundation,ÃInc.\n"
"ThisÃprogramÃcomesÃwithÃNOÃWARRANTY,ÃnotÃevenÃfor\n"
"MERCHANTABILITYÃorÃFITNESSÃFORÃAÃPARTICULARÃPURPOSE.\n"
"YouÃmayÃredistributeÃcopiesÃunderÃtheÃtermsÃofÃthe\n"
"GNUÃGeneralÃPublicÃLicense.ÃÃForÃmoreÃinformationÃon\n"
"theseÃmatters,ÃseeÃtheÃfileÃnamedÃCOPYING.\n",
stdout);

exit (EXIT_SUCCESS);
default: assert (0);
}

}
}
This code is included in §97.

Appendix C: Glossary 331

Appendix C Glossary

adjacent: Two nodes in a binary tree are adjacent if one is the child of the other.
AVL tree: A type of balanced tree, where the AVL balance factor of each node is limited

to −1, 0, or +1.
balance: To rearrange a binary search tree so that it has its minimum possible height,

approximately the binary logarithm of its number of nodes.
balance condition: In a balanced tree, the additional rule or rules that limit the tree’s

height.
balance factor: For any node in an AVL tree, the difference between the height of the

node’s right subtree and left subtree.
balanced tree: A binary search tree along with a rule that limits the tree’s height in

order to avoid a pathological case. Types of balanced trees: AVL tree, red-black tree.
binary search: A technique for searching by comparison of keys, in which the search

space roughly halves in size after each comparison step.
binary search tree: A binary tree with the additional property that the key in each

node’s left child is less than the node’s key, and that the key in each node’s right child is
greater than the node’s key. In inorder traversal, the items in a BST are visited in sorted
order of their keys.

binary tree: A data structure that is either an empty tree or consists of a root, a left
subtree, and a right subtree.

black box: Conceptually, a device whose input and output are defined but whose prin-
ciples of internal operation is not specified.

black-height: In a red-black tree, the number of black nodes along a simple path from
a given node down to a non-branching node. Due to rule 2, this is the same regardless of
the path chosen.

BST: See binary search tree.
child: In a binary tree, a left child or right child of a node.
children: More than one child.
color: In a red-black tree, a property of a node, either red or black. Node colors in a

red-black tree are constrained by rule 1 and rule 2

complete binary tree: A binary tree in which every simple path from the root down to
a leaf has the same length and every non-leaf node has two children.

compression: A transformation on a binary search tree used to rebalance (sense 2).
deep copy: In making a copy of a complex data structure, it is often possible to copy

upper levels of data without copying lower levels. If all levels are copied nonetheless, it is a
deep copy. See also shallow copy.

dynamic: 1. When speaking of data, data that can change or (in some contexts) varies
quickly. 2. In C, memory allocation with malloc() and related functions. See also static.

empty tree: A binary tree without any nodes.
height: In a binary tree, the maximum number of nodes that can be visited starting at

the tree’s root and moving only downward. An an empty tree has height 0.

332 GNU libavl 2.0.1

idempotent: Having the same effect as if used only once, even if used multiple times. C
header files are usually designed to be idempotent.

inorder predecessor: The node preceding a given node in an inorder traversal.
inorder successor: The node following a given node in an inorder traversal.
inorder traversal: A type of binary tree traversal where the root’s left subtree is tra-

versed, then the root is visited, then the root’s right subtree is traversed.
iteration: In C, repeating a sequence of statements without using recursive function

calls, most typically accomplished using a for or while loop. Oppose recursion.
key: In a binary search tree, data stored in a node and used to order nodes.
leaf: A node whose children are empty.
left child: In a binary tree, the root of a node’s left subtree, if that subtree is non-empty.

A node that has an empty left subtree may be said to have no left child.
left rotation: See [rotation], page 333.
left subtree: Part of a non-empty binary tree.
left-threaded tree: A binary search tree augmented to simplify and speed up traversal

in reverse of inorder traversal, but not traversal in the forward direction.
literate programming: A philosophy of programming that regards software as a type of

literature, popularized by Donald Knuth through his works such as [Knuth 1992].
node: The basic element of a binary tree, consisting of a key, a left child, and a right

child.
non-branching node: A node in a binary tree that has exactly zero or one non-empty

children.
nonterminal node: A node with at least one nonempty subtree.
parent: When one node in a binary tree is the child of another, the first node. A node

that is not the child of any other node has no parent.
parent pointer: A pointer within a node to its parent node.
pathological case: In a binary search tree context, a BST whose height is much greater

than the minimum possible. Avoidable through use of balanced tree techniques.
path: In a binary tree, a list of nodes such that, for each pair of nodes appearing adjacent

in the list, one of the nodes is the parent of the other.
postorder traversal: A type of binary tree traversal where the root’s left subtree is

traversed, then the root’s right subtree is traversed, then the root is visited.
preorder traversal: A type of binary tree traversal where the root is visited, then the

root’s left subtree is traversed, then the root’s right subtree is traversed.
rebalance: 1. After an operation that modifies a balanced tree, to restore the tree’s

balance condition, typically by rotation or, in a red-black tree, changing the color of one
or more nodes. 2. To reorganize a binary search tree so that its shape more closely
approximates that of a complete binary tree.

recursion: In C, describes a function that calls itself directly or indirectly. See also tail
recursion. Oppose iteration.

red-black tree: A form of balanced tree where each node has a color and these colors
are laid out such that they satisfy rule 1 and rule 2 for red-black trees.

Appendix C: Glossary 333

right child: In a binary tree, the root of a node’s right subtree, if that subtree is non-
empty. A node that has an empty right subtree may be said to have no right child.

right rotation: See [rotation], page 333.
right subtree: Part of a non-empty binary tree.
right-threaded tree: A binary search tree augmented to simplify and speed up inorder

traversal, but not traversal in the reverse order.
rotation: A particular type of simple transformation on a binary search tree that changes

local structure without changing inorder traversal ordering. See Section 4.3 [BST Rota-
tions], page 33, Section 8.2 [TBST Rotations], page 192, Section 11.3 [RTBST Rotations],
page 248, and Section 14.2 [PBST Rotations], page 294, for more details.

root: A node taken as a binary tree in its own right. Every node is the root of a binary
tree, but “root” is most often used to refer to a node that is not a child of any other node.

rule 1: One of the rules governing layout of node colors in a red-black tree: no red node
may have a red child. See Section 6.1 [RB Balancing Rule], page 139.

rule 2: One of the rules governing layout of node colors in a red-black tree: every simple
path from a given node to one of its non-branching node descendants contains the same
number of black nodes. See Section 6.1 [RB Balancing Rule], page 139.

sentinel: In the context of searching in a data structure, a piece of data used to avoid
an explicit test for a null pointer, the end of an array, etc., typically by setting its value to
that of the looked-for data item.

sequential search: A technique for searching by comparison of keys, in which the search
space is typically reduced only by one item for each comparison.

sequential search with sentinel: A sequential search in a search space set up with a
sentinel.

shallow copy: In making a copy of a complex data structure, it is often possible to copy
upper levels of data without copying lower levels. If lower levels are indeed shared, it is a
shallow copy. See also deep copy.

simple path: A path that does not include any node more than once.
static: 1. When speaking of data, data that is invariant or (in some contexts) changes

rarely. 2. In C, memory allocation other than that done with malloc() and related functions.
3. In C, a keyword used for a variety of purposes, some of which are related to sense 2. See
also dynamic.

subtree: A binary tree that is itself a child of some node.
symmetric traversal: inorder traversal.
tag: A field in a threaded tree node used to distinguish a thread from a child pointer.
tail recursion: A form of recursion where a function calls itself as its last action. If the

function is non-void, the outer call must also return to its caller the value returned by the
inner call in order to be tail recursive.

terminal node: A node with no left child or right child.
thread: In a threaded tree, a pointer to the predecessor or successor of a node, replacing

a child pointer that would otherwise be null. Distinguished from an ordinary child pointer
using a tag.

334 GNU libavl 2.0.1

threaded tree: A form of binary search tree augmented to simplify inorder traversal.
See also thread, tag.

traversal: To visit each of the nodes in a binary tree according to some scheme based
on the tree’s structure. See inorder traversal, preorder traversal, postorder traversal.

undefined behavior: In C, a situation to which the computer’s response is unpredictable.
It is frequently noted that, when undefined behavior is invoked, it is legal for the compiler
to “make demons fly out of your nose.”

value: Often kept in a node along with the key, a value is auxiliary data not used to
determine ordering of nodes.

vine: A degenerate binary tree, resembling a linked list, in which each node has at most
one child.

visit: During traversal, to perform an operation on a node, such as to display its value
or free its associated memory.

Appendix D: Answers to All the Exercises 335

Appendix D Answers to All the Exercises

Chapter 2

Section 2.1

1. If the table is not a dictionary, then we can just include a count along with each item
recording the number of copies of it that would otherwise be included in the table. If the
table is a dictionary, then each data item can include a single key and possibly multiple
values.

Section 2.2

1. Only macro parameter names can safely appear prefixless. Macro parameter names are
significant only in a scope from their declaration to the end of the macro definition. Macro
parameters may even be named as otherwise reserved C keywords such as int and while,
although this is a bad idea.

The main reason that the other kinds of identifiers must be prefixed is the possibility
of a macro having the same name. A surprise macro expansion in the midst of a function
prototype can lead to puzzling compiler diagnostics.

2. The capitalized equivalent is ERR_, which is a reserved identifier. All identifiers that begin
with an uppercase ‘E’ followed by a digit or capital letter are reserved in many contexts. It
is best to avoid them entirely. There are other identifiers to avoid, too. The article cited
below has a handy list.
See also: [Brown 2001].

Section 2.3

1. C does not guarantee that an integer cast to a pointer and back retains its value. In
addition, there’s a chance that an integer cast to a pointer becomes the null pointer value.
This latter is not limited to integers with value 0. On the other hand, a nonconstant integer
with value 0 is not guaranteed to become a null pointer when cast.

Such a technique is only acceptable when the machine that the code is to run on is
known in advance. At best it is inelegant. At worst, it will cause erroneous behavior.
See also: [Summit 1999], section 5; [ISO 1990], sections 6.2.2.3 and 6.3.4; [ISO 1999], section
6.3.2.3.

2. This definition would only cause problems if the subtraction overflowed. It would be
acceptable if it was known that the values to be compared would always be in a small
enough range that overflow would never occur.

Here are two more “clever” definitions for compare ints() that work in all cases:
/∗ Credit: GNU C library reference manual. ∗/
int compare ints (const void ∗pa, const void ∗pb, void ∗param) {

const int ∗a = pa;

336 GNU libavl 2.0.1

const int ∗b = pb;
return (∗a > ∗b) − (∗a < ∗b);

}
int compare ints (const void ∗pa, const void ∗pb, void ∗param) {

const int ∗a = pa;
const int ∗b = pb;
return (∗a < ∗b) ? −1 : (∗a > ∗b);

}
3. No. Not only does strcmp() take parameters of different types (const char ∗s instead of
const void ∗s), our comparison functions take an additional parameter. Functions strcmp()
and compare strings() are not compatible.

4.

int compare fixed strings (const void ∗pa, const void ∗pb, void ∗param) {
return memcmp (pa, pb, ∗(size t ∗) param);

}
5a. Here’s the blow-by-blow rundown:
• Irreflexivity: a == a is always true for integers.
• Antisymmetry: If a > b then b < a for integers.
• Transitivity: If a > b and b > c then a > c for integers.
• Transitivity of equivalence: If a == b and b == c, then a == c for integers.

5b. Yes, strcmp() satisfies all of the points above.

5c. Consider the domain of pairs of integers (x0 ,x1) with x1 ≥ x0 . Pair x , composed of
(x0 ,x1), is less than pair y , composed of (y0 ,y1), if x1 < y0 . Alternatively, pair x is greater
than pair y if x0 > y1 . Otherwise, the pairs are equal.

This rule is irreflexive: for any given pair a, neither a1 < a0 nor a0 > a1 , so a == a.
It is antisymmetic: a > b implies a0 > b1 , therefore b1 < a0 , and therefore b < a. It is
transitive: a > b implies a0 > b1 , b > c implies b0 > c1 , and we know that b1 > b0 , so
a0 > b1 > b0 > c1 and a > c. It does not have transitivity of equivalence: suppose that
we have a ≡ (1,2), b ≡ (2,3), c ≡ (3,4). Then, a == b and b == c, but not a == c.

A form of augmented binary search tree, called an “interval tree”, can be used to effi-
ciently handle this data type. The references have more details.
See also: [Cormen 1990], section 15.3.

6a. !f (a, b) && !f (b, a) and !f (a, b) && f (b, a).

6b.

static int bin cmp (const void ∗a, const void ∗b, void ∗param, bst comparison func tern) {
return tern (a, b, param) < 0;

}
6c. This problem presents an interesting tradeoff. We must choose between sometimes
calling the comparison function twice per item to convert our ≥ knowledge into > or ≡ , or
always traversing all the way to a leaf node, then making a final call to decide on equality.
The former choice doesn’t provide any new insight, so we choose the latter here.

Appendix D: Answers to All the Exercises 337

In the code below, p traverses the tree and q keeps track of the current candidate for a
match to item. If the item in p is less than item, then the matching item, if any, must be
in the left subtree of p, and we leave q as it was. Otherwise, the item in p is greater than
or equal to p and then matching item, if any, is either p itself or in its right subtree, so we
set q to the potential match. When we run off the bottom of the tree, we check whether q
is really a match by making one additional comparison.
void ∗bst find (const struct bst table ∗tree, const void ∗item) {

const struct bst node ∗p;
void ∗q ;
assert (tree != NULL && item != NULL);
p = tree→bst root ;
q = NULL;
while (p != NULL)

if (!bin cmp (p→bst data, item, tree→bst param, tree→bst compare)) {
q = p→bst data;
p = p→bst link [0];

}
else p = p→bst link [1];

if (q != NULL && !bin cmp (item, q , tree→bst param, tree→bst compare))
return q ;

else return NULL;
}

Section 2.5

1. It’s not necessary, for reasons of the C definition of type compatibility. Within a C
source file (more technically, a “translation unit”), two structures are compatible only if
they are the same structure, regardless of how similar their members may be, so hypo-
thetical structures struct bst allocator and struct avl allocator couldn’t be mixed together
without nasty-smelling casts. On the other hand, prototyped function types are compatible
if they have compatible return types and compatible parameter types, so bst item func and
avl item func (say) are interchangeable.

2. This allocator uses the same function tbl free() as tbl allocator default .
§590 〈Aborting allocator 590 〉 ≡

/∗ Allocates size bytes of space using malloc().
Aborts if out of memory. ∗/

void ∗tbl malloc abort (struct libavl allocator ∗allocator , size t size) {
void ∗block ;
assert (allocator != NULL && size > 0);
block = malloc (size);
if (block != NULL)

return block ;
fprintf (stderr , "outÃofÃmemory\n");
exit (EXIT_FAILURE);

}

338 GNU libavl 2.0.1

struct libavl allocator tbl allocator abort = {
tbl malloc abort , tbl free};

3. Define a wrapper structure with struct libavl allocator as its first member. For instance,
a hypothetical pool allocator might look like this:
struct pool allocator {

struct libavl allocator suballocator ;
struct pool ∗pool ;

};
Because a pointer to the first member of a structure is a pointer to the structure itself,
and vice versa, the allocate and free functions can use a cast to access the larger struct
pool allocator given a pointer to struct libavl allocator. If we assume the existence of
functions pool malloc() and pool free() to allocate and free memory within a pool, then we
can define the functions for struct pool allocator’s suballocator like this:
void ∗pool allocator malloc (struct libavl allocator ∗allocator , size t size) {

struct pool allocator ∗pa = (struct pool allocator ∗) allocator ;
return pool malloc (pa→pool , size);

}
void pool allocator free (struct libavl allocator ∗allocator , void ∗ptr) {

struct pool allocator ∗pa = (struct pool allocator ∗) allocator ;
pool free (pa→pool , ptr);

}
Finally, we want to actually allocate a table inside a pool. The following function does

this. Notice the way that it uses the pool to store the struct pool allocator as well; this
trick comes in handy sometimes.
struct tbl table ∗pool allocator tbl create (struct tbl pool ∗pool) {

struct pool allocator ∗pa = pool malloc (pool , sizeof ∗pa);
if (pa == NULL)

return NULL;
pa→suballocator .tbl malloc = pool allocator malloc;
pa→suballocator .tbl free = pool allocator free;
pa→pool = pool ;
return tbl create (compare ints, NULL, &pa→suballocator);

}

Section 2.7

1. Notice the cast to size t in the macro definition below. This prevents the result of
tbl count() from being used as an lvalue (that is, on the left side of an assignment operator),
because the result of a cast is never an lvalue.

§591 〈Table count macro 591 〉 ≡
#define tbl count(table) ((size t) (table)→tbl count)
This code is included in §15.

Another way to get the same effect is to use the unary + operator, like this:
#define tbl count(table) (+(table)→tbl count)
See also: [ISO 1990], section 6.3.4; [Kernighan 1988], section A7.5.

Appendix D: Answers to All the Exercises 339

Section 2.8

1. If a memory allocation function that never returns a null pointer is used, then it is
reasonable to use these functions. For instance, tbl allocator abort from Exercise 2.5-2 is
such an allocator.

2. Among other reasons, tbl find() returns a null pointer to indicate that no matching item
was found in the table. Null pointers in the table could therefore lead to confusing results.
It is better to entirely prevent them from being inserted.

3.

§592 〈Table insertion convenience functions 592 〉 ≡
void ∗tbl insert (struct tbl table ∗table, void ∗item) {

void ∗∗p = tbl probe (table, item);
return p == NULL || ∗p == item ? NULL : ∗p;

}
void ∗tbl replace (struct tbl table ∗table, void ∗item) {

void ∗∗p = tbl probe (table, item);
if (p == NULL || ∗p == item)

return NULL;
else {

void ∗r = ∗p;
∗p = item;
return r ;

}
}
This code is included in §29, §145, §196, §251, §300, §336, §375, §418, §455, §489, §522, and §554.

Section 2.9

1. Keep in mind that these directives have to be processed every time the header file is
included. (Typical header file are designed to be “idempotent”, i.e., processed by the com-
piler only on first inclusion and skipped on any later inclusions, because some C constructs
cause errors if they are encountered twice during a compilation.)

§593 〈Table assertion function control directives 593 〉 ≡
/∗ Table assertion functions. ∗/
#ifndef NDEBUG
#undef tbl assert insert
#undef tbl assert delete
#else
#define tbl assert insert(table, item) tbl insert (table, item)
#define tbl assert delete(table, item) tbl delete (table, item)
#endif

This code is included in §24.

See also: [Summit 1999], section 10.7.

2. tbl assert insert() must be based on tbl probe(), because tbl insert() does not distinguish
in its return value between successful insertion and memory allocation errors.

340 GNU libavl 2.0.1

Assertions must be enabled for these functions because we want them to verify success
if assertions were enabled at the point from which they were called, not if assertions were
enabled when the table was compiled.

Notice the parentheses around the assertion function names before. The parentheses
prevent the macros by the same name from being expanded. A function-like macro is only
expanded when its name is followed by a left parenthesis, and the extra set of parentheses
prevents this from being the case. Alternatively #undef directives could be used to achieve
the same effect.

§594 〈Table assertion functions 594 〉 ≡
#undef NDEBUG
#include 〈 assert.h 〉
void (tbl assert insert) (struct tbl table ∗table, void ∗item) {

void ∗∗p = tbl probe (table, item);
assert (p != NULL && ∗p == item);

}
void ∗(tbl assert delete) (struct tbl table ∗table, void ∗item) {

void ∗p = tbl delete (table, item);
assert (p != NULL);
return p;

}
This code is included in §29, §145, §196, §251, §300, §336, §375, §418, §455, §489, §522, and §554.

3. The assert() macro is meant for testing for design errors and “impossible” conditions, not
runtime errors like disk input/output errors or memory allocation failures. If the memory
allocator can fail, then the assert() call in tbl assert insert() effectively does this.

See also: [Summit 1999], section 20.24b.

Section 2.12

1. Both tables and sets store sorted arrangements of unique items. Both require a strict
weak ordering on the items that they contain. Libavl uses ternary comparison functions
whereas the STL uses binary comparison functions (see Exercise 2.3-6).

The description of tables here doesn’t list any particular speed requirements for opera-
tions, whereas STL sets are constrained in the complexity of their operations. It’s worth
noting, however, that the Libavl implementation of AVL and RB trees meet all of the
STL complexity requirements, for their equivalent operations, except one. The exception
is that set methods begin() and rbegin() must have constant-time complexity, whereas the
equivalent Libavl functions ∗ t first() and ∗ t last() on AVL and RB trees have logarithmic
complexity.

Libavl traversers and STL iterators have similar semantics. Both remain valid if new
items are inserted, and both remain valid if old items are deleted, unless it’s the iterator’s
current item that’s deleted.

The STL has a more complete selection of methods than Libavl does of table functions,
but many of the additional ones (e.g., distance() or erase() each with two iterators as
arguments) can be implemented easily in terms of existing Libavl functions. These might

Appendix D: Answers to All the Exercises 341

benefit from optimization possible with specialized implementations, but may not be worth
it. The SGI/HP implementation of the STL does not contain any such optimization.
See also: [ISO 1998], sections 23.1, 23.1.2, and 23.3.3.

2. The nonessential functions are:
• tbl probe(), tbl insert(), and tbl replace(), which can be implemented in terms of

tbl t insert() and tbl t replace().
• tbl find(), which can be implemented in terms of tbl t find().
• tbl assert insert() and tbl assert delete().
• tbl t first() and tbl t last(), which can be implemented with tbl t init() and tbl t next().

If we allow it to know what allocator was used for the original table, which is, strictly
speaking, cheating, then we can also implement tbl copy() in terms of tbl create(),
tbl t insert(), and tbl destroy(). Under similar restrictions we can also implement
tbl t prev() and tbl t copy() in terms of tbl t init() and tbl t next(), though in a very
inefficient way.

Chapter 3

Section 3.1

1. The following program can be improved in many ways. However, we will implement a
much better testing framework later, so this is fine for now.

§595 〈 seq-test.c 595 〉 ≡
〈License 1 〉
#include 〈 stdio.h 〉
#define MAX_INPUT 1024
〈Sequentially search an array of ints 16 〉
int main (void) {

int array [MAX_INPUT];
int n, i ;
for (n = 0; n < MAX_INPUT; n++)

if (scanf ("%d", &array [n]) != 1)
break;

for (i = 0; i < n; i++) {
int result = seq search (array , n, array [i]);
if (result != i)

printf ("seq_search()ÃreturnedÃ%dÃlookingÃforÃ%dÃ-ÃexpectedÃ%d\n",
result , array [i], i);

}
return 0;

}

Section 3.4

1. Some types don’t have a largest possible value; e.g., arbitrary-length strings.

342 GNU libavl 2.0.1

Section 3.5

1. Knuth’s name for this procedure is “uniform binary search.” The code below is an almost-
literal implementation of his Algorithm U. The fact that Knuth’s arrays are 1-based, but C
arrays are 0-based, accounts for most of the differences.

The code below uses for (;;) to assemble an “infinite” loop, a common C idiom.
§596 〈Uniform binary search of ordered array 596 〉 ≡

/∗ Returns the offset within array [] of an element equal to key , or −1 if key is not in array [].
array [] must be an array of n ints sorted in ascending order, with array [−1] modifiable. ∗/

int uniform binary search (int array [], int n, int key) {
int i = (n + 1) / 2 − 1;
int m = n / 2;
array [−1] = INT_MIN;
for (;;) {

if (key < array [i]) {
if (m == 0)

return −1;
i −= (m + 1) / 2;
m /= 2;

}
else if (key > array [i]) {

if (m == 0)
return −1;

i += (m + 1) / 2;
m /= 2;

}
else return i >= 0 ? i : −1;

}
}
This code is included in §600.

See also: [Knuth 1998b], section 6.2.1, Algorithm U.

2a. This actually uses blp bsearch(), implemented in part (b) below, in order to allow that
function to be tested. You can replace the reference to blp bsearch() by bsearch() without
problem.

§597 〈Binary search using bsearch() 597 〉 ≡
〈blp’s implementation of bsearch() 598 〉
/∗ Compares the ints pointed to by pa and pb and returns positive

if ∗pa > ∗pb, negative if ∗pa < ∗pb, or zero if ∗pa == ∗pb. ∗/
static int compare ints (const void ∗pa, const void ∗pb) {

const int ∗a = pa;
const int ∗b = pb;
if (∗a > ∗b) return 1;
else if (∗a < ∗b) return −1;
else return 0;

}

Appendix D: Answers to All the Exercises 343

/∗ Returns the offset within array [] of an element equal to key , or −1 if key is not in array [].
array [] must be an array of n ints sorted in ascending order. ∗/

static int binary search bsearch (int array [], int n, int key) {
int ∗p = blp bsearch (&key , array , n, sizeof ∗array , compare ints);
return p != NULL ? p − array : −1;

}
This code is included in §600.

2b. This function is named using the author of this book’s initials. Note that the im-
plementation below assumes that count , a size t, won’t exceed the range of an int. Some
systems provide a type called ssize t for this purpose, but we won’t assume that here. (long
is perhaps a better choice than int.)

§598 〈blp’s implementation of bsearch() 598 〉 ≡
/∗ Plug-compatible with standard C library bsearch(). ∗/
static void ∗blp bsearch (const void ∗key , const void ∗array , size t count ,

size t size, int (∗compare) (const void ∗, const void ∗)) {
int min = 0;
int max = count ;
while (max >= min) {

int i = (min + max) / 2;
void ∗item = ((char ∗) array) + size ∗ i ;
int cmp = compare (key , item);
if (cmp < 0) max = i − 1;
else if (cmp > 0) min = i + 1;
else return item;

}
return NULL;

}
This code is included in §597.

3. Here’s an outline of the entire program:
§599 〈 srch-test.c 599 〉 ≡

〈License 1 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include 〈 time.h 〉
〈Search functions 600 〉
〈Array of search functions 601 〉
〈Timer functions 604 〉
〈Search test functions 606 〉
〈Search test main program 609 〉

We need to include all the search functions we’re going to use:
§600 〈Search functions 600 〉 ≡

〈Sequentially search an array of ints 16 〉
〈Sequentially search an array of ints using a sentinel 17 〉

344 GNU libavl 2.0.1

〈Sequentially search a sorted array of ints 18 〉
〈Sequentially search a sorted array of ints using a sentinel 19 〉
〈Sequentially search a sorted array of ints using a sentinel (2) 20 〉
〈Binary search of ordered array 21 〉
〈Uniform binary search of ordered array 596 〉
〈Binary search using bsearch() 597 〉
〈Cheating search 603 〉
This code is included in §599.

We need to make a list of the search functions. We start by defining the array’s element
type:

§601 〈Array of search functions 601 〉 ≡
/∗ Description of a search function. ∗/
struct search func {

const char ∗name;
int (∗search) (int array [], int n, int key);

};
See also §602.

This code is included in §599.

Then we define the list as an array:
§602 〈Array of search functions 601 〉 +≡

/∗ Array of all the search functions we know. ∗/
struct search func search func tab[] = {

{"seq_search()", seq search},
{"seq_sentinel_search()", seq sentinel search},
{"seq_sorted_search()", seq sorted search},
{"seq_sorted_sentinel_search()", seq sorted sentinel search},
{"seq_sorted_sentinel_search_2()", seq sorted sentinel search 2},
{"binary_search()", binary search},
{"uniform_binary_search()", uniform binary search},
{"binary_search_bsearch()", binary search bsearch},
{"cheat_search()", cheat search},

};
/∗ Number of search functions. ∗/
const size t n search func = sizeof search func tab / sizeof ∗search func tab;

We’ve added previously unseen function cheat search() to the array. This is a function
that “cheats” on the search because it knows that we are only going to search in a array
such that array [i] == i . The purpose of cheat search() is to allow us to find out how much
of the search time is overhead imposed by the framework and the function calls and how
much is actual search time. Here’s cheat search():

§603 〈Cheating search 603 〉 ≡
/∗ Cheating search function that knows that array [i] == i .

n must be the array size and key the item to search for.
array [] is not used.
Returns the index in array [] where key is found, or −1 if key is not in array []. ∗/

int cheat search (int array [], int n, int key) {

Appendix D: Answers to All the Exercises 345

return key >= 0 && key < n ? key : −1;
}
This code is included in §600.

We’re going to need some functions for timing operations. First, a function to “start” a
timer:

§604 〈Timer functions 604 〉 ≡
/∗ “Starts” a timer by recording the current time in ∗t . ∗/
static void start timer (clock t ∗t) {

clock t now = clock ();
while (now == clock ())

/∗ Do nothing. ∗/;
∗t = clock ();

}
See also §605.

This code is included in §599.

Function start timer() waits for the value returned by clock() to change before it records
the value. On systems with a slow timer (such as PCs running MS-DOS, where the clock
ticks only 18.2 times per second), this gives more stable timing results because it means
that timing always starts near the beginning of a clock tick.

We also need a function to “stop” the timer and report the results:
§605 〈Timer functions 604 〉 +≡

/∗ Prints the elapsed time since start , set by start timer(). ∗/
static void stop timer (clock t start) {

clock t end = clock ();
printf ("%.2fÃseconds\n", ((double) (end − start)) / CLOCKS_PER_SEC);

}
The value reported by clock() can “wrap around” to zero from a large value. stop timer()

does not allow for this possibility.
We will write three tests for the search functions. The first of these just checks that the

search function works properly:
§606 〈Search test functions 606 〉 ≡

/∗ Tests that f→search returns expect when called to search for key within array [],
which has n elements such that array [i] == i . ∗/

static void test search func at (struct search func ∗f , int array [], int n,
int key , int expect) {

int result = f→search (array , n, key);
if (result != expect)

printf ("%sÃreturnedÃ%dÃlookingÃforÃ%dÃ-ÃexpectedÃ%d\n",
f→name, result , key , expect);

}
/∗ Tests searches for each element in array [] having n elements such that array [i] == i ,

and some unsuccessful searches too, all using function f→search. ∗/
static void test search func (struct search func ∗f , int array [], int n) {

static const int shouldnt find [] = {INT_MIN, −20, −1, INT_MAX};

346 GNU libavl 2.0.1

int i ;
printf ("TestingÃintegrityÃofÃ%s...ÃÃ", f→name);
fflush (stdout);
/∗ Verify that the function finds values that it should. ∗/
for (i = 0; i < n; i++)

test search func at (f , array , n, i , i);
/∗ Verify that the function doesn’t find values it shouldn’t. ∗/
for (i = 0; i < (int) (sizeof shouldnt find / sizeof ∗shouldnt find); i++)

test search func at (f , array , n, shouldnt find [i], −1);
printf ("done\n");

}
See also §607 and §608.

This code is included in §599.

The second test function finds the time required for searching for elements in the array:
§607 〈Search test functions 606 〉 +≡

/∗ Times a search for each element in array [] having n elements such that
array [i] == i , repeated n iter times, using function f→search. ∗/

static void time successful search (struct search func ∗f , int array [], int n, int n iter) {
clock t timer ;
printf ("TimingÃ%dÃsetsÃofÃsuccessfulÃsearches...ÃÃ", n iter);
fflush (stdout);
start timer (&timer);
while (n iter−− > 0) {

int i ;
for (i = 0; i < n; i++)

f→search (array , n, i);
}
stop timer (timer);

}
The last test function finds the time required for searching for values that don’t appear

in the array:
§608 〈Search test functions 606 〉 +≡

/∗ Times n search for elements not in array [] having n elements such that
array [i] == i , repeated n iter times, using function f→search. ∗/

static void time unsuccessful search (struct search func ∗f , int array [], int n, int n iter) {
clock t timer ;
printf ("TimingÃ%dÃsetsÃofÃunsuccessfulÃsearches...ÃÃ", n iter);
fflush (stdout);
start timer (&timer);
while (n iter−− > 0) {

int i ;
for (i = 0; i < n; i++)

f→search (array , n, −i);
}

Appendix D: Answers to All the Exercises 347

stop timer (timer);
}

Here’s the main program:
§609 〈Search test main program 609 〉 ≡

〈Usage printer for search test program 615 〉
〈String to integer function stoi() 611 〉
int main (int argc, char ∗argv []) {

struct search func ∗f ; /∗ Search function. ∗/
int ∗array , n; /∗ Array and its size. ∗/
int n iter ; /∗ Number of iterations. ∗/
〈Parse search test command line 610 〉
〈 Initialize search test array 612 〉
〈Run search tests 613 〉
〈Clean up after search tests 614 〉
return 0;

}
This code is included in §599.

§610 〈Parse search test command line 610 〉 ≡
if (argc != 4) usage ();
{

long algorithm = stoi (argv [1]) − 1;
if (algorithm < 0 || algorithm > (long) n search func) usage ();
f = &search func tab[algorithm];

}
n = stoi (argv [2]);
n iter = stoi (argv [3]);
if (n < 1 || n iter < 1) usage ();
This code is included in §609.

§611 〈String to integer function stoi() 611 〉 ≡
/∗ s should point to a decimal representation of an integer.

Returns the value of s, if successful, or 0 on failure. ∗/
static int stoi (const char ∗s) {

long x = strtol (s, NULL, 10);
return x >= INT_MIN && x <= INT_MAX ? x : 0;

}
This code is included in §609 and §617.

When reading the code below, keep in mind that some of our algorithms use a sentinel
at the end and some use a sentinel at the beginning, so we allocate two extra integers and
take the middle part.

§612 〈 Initialize search test array 612 〉 ≡
array = malloc ((n + 2) ∗ sizeof ∗array);
if (array == NULL) {

fprintf (stderr , "outÃofÃmemory\n");
exit (EXIT_FAILURE);

348 GNU libavl 2.0.1

}
array++;
{

int i ;
for (i = 0; i < n; i++)

array [i] = i ;
}
This code is included in §609.

§613 〈Run search tests 613 〉 ≡
test search func (f , array , n);
time successful search (f , array , n, n iter);
time unsuccessful search (f , array , n, n iter);
This code is included in §609.

§614 〈Clean up after search tests 614 〉 ≡
free (array − 1);
This code is included in §609.

§615 〈Usage printer for search test program 615 〉 ≡
/∗ Prints a message to the console explaining how to use this program. ∗/
static void usage (void) {

size t i ;
fputs ("usage:Ãsrch-testÃ<algorithm>Ã<array-size>Ã<n-iterations>\n"

"whereÃ<algorithm>ÃisÃoneÃofÃtheÃfollowing:\n", stdout);
for (i = 0; i < n search func; i++)

printf ("ÃÃÃÃÃÃÃÃ%uÃforÃ%s\n", (unsigned) i + 1, search func tab[i].name);
fputs ("ÃÃÃÃÃÃ<array-size>ÃisÃtheÃsizeÃofÃtheÃarrayÃtoÃsearch,Ãand\n"

"ÃÃÃÃÃÃ<n-iterations>ÃisÃtheÃnumberÃofÃtimesÃtoÃiterate.\n", stdout);
exit (EXIT_FAILURE);

}
This code is included in §609.

4. Here are the results on the author’s computer, a Pentium II at 233 MHz, using GNU
C 2.95.2, for 1024 iterations using arrays of size 1024 with no optimization. All values are
given in seconds rounded to tenths.
Function Successful searches Unsuccessful searches

seq search() 18.4 36.3
seq sentinel search() 16.5 32.8
seq sorted search() 18.6 0.1
seq sorted sentinel search() 16.4 0.2
seq sorted sentinel search 2 () 16.6 0.2
binary search() 1.3 1.2
uniform binary search() 1.1 1.1
binary search bsearch() 2.6 2.4
cheat search() 0.1 0.1

Results of similar tests using full optimization were as follows:

Appendix D: Answers to All the Exercises 349

Function Successful searches Unsuccessful searches

seq search() 6.3 12.4
seq sentinel search() 4.8 9.4
seq sorted search() 9.3 0.1
seq sorted sentinel search() 4.8 0.2
seq sorted sentinel search 2 () 4.8 0.2
binary search() 0.7 0.5
uniform binary search() 0.7 0.6
binary search bsearch() 1.5 1.2
cheat search() 0.1 0.1

Observations:
• In general, the times above are about what we might expect them to be: they decrease

as we go down the table.
• Within sequential searches, the sentinel-based searches have better search times than

non-sentinel searches, and other search characteristics (whether the array was sorted,
for instance) had little impact on performance.

• Unsuccessful searches were very fast for sorted sequential searches, but the particular
test set used always allowed such searches to terminate after a single comparison. For
other test sets one might expect these numbers to be similar to those for unordered
sequential search.

• Either of the first two forms of binary search had the best overall performance. They
also have the best performance for successful searches and might be expected to have
the best performance for unsuccessful searches in other test sets, for the reason given
before.

• Binary search using the general interface bsearch() was significantly slower than either
of the other binary searches, probably because of the cost of the extra function calls.
Items that are more expensive to compare (for instance, long text strings) might be
expected to show less of a penalty.

Here are the results on the same machine for 1,048,576 iterations on arrays of size 8 with
full optimization:
Function Successful searches Unsuccessful searches

seq search() 1.7 2.0
seq sentinel search() 1.7 2.0
seq sorted search() 2.0 1.1
seq sorted sentinel search() 1.9 1.1
seq sorted sentinel search 2 () 1.8 1.2
binary search() 2.5 1.9
uniform binary search() 2.4 2.3
binary search bsearch() 4.5 3.9
cheat search() 0.7 0.7

For arrays this small, simple algorithms are the clear winners. The additional complica-
tions of binary search make it slower. Similar patterns can be expected on most architec-
tures, although the “break even” array size where binary search and sequential search are
equally fast can be expected to differ.

350 GNU libavl 2.0.1

Section 3.6

1. Here is one easy way to do it:
§616 〈 Initialize smaller and larger within binary search tree 616 〉 ≡

/∗ Initializes larger and smaller within range min . . .max of array [],
which has n real elements plus a (n + 1)th sentinel element. ∗/

int init binary tree array (struct binary tree entry array [], int n, int min, int max) {
if (min <= max) {

/∗ The ‘+ 1’ is necessary because the tree root must be at n / 2,
and on the first call we have min == 0 and max == n − 1. ∗/

int i = (min + max + 1) / 2;
array [i].larger = init binary tree array (array , n, i + 1, max);
array [i].smaller = init binary tree array (array , n, min, i − 1);
return i ;

}
else return n;

}
This code is included in §617.

2.

§617 〈 bin-ary-test.c 617 〉 ≡
〈License 1 〉
#include 〈 limits.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
〈Binary search tree entry 22 〉
〈Search of binary search tree stored as array 23 〉
〈 Initialize smaller and larger within binary search tree 616 〉
〈Show ‘bin-ary-test’ usage message 619 〉
〈String to integer function stoi() 611 〉
〈Main program to test binary search tree array() 618 〉

§618 〈Main program to test binary search tree array() 618 〉 ≡
int main (int argc, char ∗argv []) {

struct binary tree entry ∗array ;
int n, i ;
/∗ Parse command line. ∗/
if (argc != 2) usage ();
n = stoi (argv [1]);
if (n < 1) usage ();
/∗ Allocate memory. ∗/
array = malloc ((n + 1) ∗ sizeof ∗array);
if (array == NULL) {

fprintf (stderr , "outÃofÃmemory\n");
return EXIT_FAILURE;

}
/∗ Initialize array. ∗/

Appendix D: Answers to All the Exercises 351

for (i = 0; i < n; i++)
array [i].value = i ;

init binary tree array (array , n, 0, n − 1);
/∗ Test successful and unsuccessful searches. ∗/
for (i = −1; i < n; i++) {

int result = binary search tree array (array , n, i);
if (result != i)

printf ("SearchingÃforÃ%d:ÃexpectedÃ%d,ÃbutÃreceivedÃ%d\n",
i , i , result);

}
/∗ Clean up. ∗/
free (array);
return EXIT_SUCCESS;

}
This code is included in §617.

§619 〈Show ‘bin-ary-test’ usage message 619 〉 ≡
/∗ Print a helpful usage message and abort execution. ∗/
static void usage (void) {

fputs ("Usage:Ãbin-ary-testÃ<array-size>\n"
"whereÃ<array-size>ÃisÃtheÃsizeÃofÃtheÃarrayÃtoÃtest.\n",
stdout);

exit (EXIT_FAILURE);
}
This code is included in §617.

Chapter 4

1. This construct makes 〈 bst.h 24 〉 idempotent, that is, including it many times has the
same effect as including it once. This is important because some C constructs, such as type
definitions with typedef, are erroneous if included in a program multiple times.

Of course, 〈Table assertion function control directives 593 〉 is included outside the
#ifndef-protected part of 〈 bst.h 24 〉. This is intentional (see Exercise 2.9-1 for details).

Section 4.2.2

1. Under many circumstances we often want to know how many items are in a binary tree.
In these cases it’s cheaper to keep track of item counts as we go instead of counting them
each time, which requires a full binary tree traversal.

It would be better to omit it if we never needed to know how many items were in the
tree, or if we only needed to know very seldom.

Section 4.2.3

1. The purpose for conditional definition of BST_MAX_HEIGHT is not to keep it from being
redefined if the header file is included multiple times. There’s a higher-level “include guard”

352 GNU libavl 2.0.1

for that (see Exercise 4-1), and, besides, identical definitions of a macro are okay in C.
Instead, it is to allow the user to set the maximum height of binary trees by defining
that macro before 〈 bst.h 24 〉 is #included. The limit can be adjusted upward for larger
computers or downward for smaller ones.

The main pitfall is that a user program will use different values of BST_MAX_HEIGHT in
different source files. This leads to undefined behavior. Less of a problem are definitions to
invalid values, which will be caught at compile time by the compiler.

Section 4.3

1.

1

2

3

4

5
1

2

4

1

2

3

4

5

6

7

2. The functions need to adjust the pointer from the rotated subtree’s parent, so they take
a double-pointer struct bst node ∗∗. An alternative would be to accept two parameters:
the rotated subtree’s parent node and the bst link [] index of the subtree.
/∗ Rotates right at ∗yp. ∗/
static void rotate right (struct bst node ∗∗yp) {

struct bst node ∗y = ∗yp;
struct bst node ∗x = y→bst link [0];
y→bst link [0] = x→bst link [1];
x→bst link [1] = y ;
∗yp = x ;

}
/∗ Rotates left at ∗xp. ∗/
static void rotate left (struct bst node ∗∗xp) {

struct bst node ∗x = ∗xp;
struct bst node ∗y = x→bst link [1];
x→bst link [1] = y→bst link [0];
y→bst link [0] = x ;
∗xp = y ;

}

Section 4.7

1. This is a dirty trick. The bst root member of struct bst table is not a struct bst node,
but we are pretending that it is by casting its address to struct bst node ∗. We can get
away with this only because the first member of struct bst node ∗ is bst link , whose first
element bst link [0] is a struct bst node ∗, the same type as bst root . ANSI C guarantees
that a pointer to a structure is a pointer to the structure’s first member, so this is fine as
long as we never try to access any member of ∗p except bst link [0]. Trying to access other
members would result in undefined behavior.

Appendix D: Answers to All the Exercises 353

The reason that we want to do this at all is that it means that the tree’s root is not a
special case. Otherwise, we have to deal with the root separately from the rest of the nodes
in the tree, because of its special status as the only node in the tree not pointed to by the
bst link [] member of a struct bst node.

It is a good idea to get used to these kinds of pointer cast, because they are common in
Libavl.

As an alternative, we can declare an actual instance of struct bst node, store the tree’s
bst root into its bst link [0], and copy its possibly updated value back into bst root when
done. This isn’t very elegant, but it works. This technique is used much later in this book,
in 〈TBST main copy function 279 〉. A different kind of alternative approach is used in
Exercise 2.

2. Here, pointer-to-pointer q traverses the tree, starting with a pointer to the root, com-
paring each node found against item while looking for a null pointer. If an item equal to
item is found, it returns a pointer to the item’s data. Otherwise, q receives the address of
the NULL pointer that becomes the new node, the new node is created, and a pointer to its
data is returned.

§620 〈BST item insertion function, alternate version 620 〉 ≡
void ∗∗bst probe (struct bst table ∗tree, void ∗item) {

struct bst node ∗∗q ;
int cmp;
assert (tree != NULL && item != NULL);
for (q = &tree→bst root ; ∗q != NULL; q = &(∗q)→bst link [cmp > 0]) {

cmp = tree→bst compare (item, (∗q)→bst data, tree→bst param);
if (cmp == 0)

return &(∗q)→bst data;
}
∗q = tree→bst alloc→libavl malloc (tree→bst alloc, sizeof ∗∗q);
if (∗q == NULL)

return NULL;
(∗q)→bst link [0] = (∗q)→bst link [1] = NULL;
(∗q)→bst data = item;
tree→bst count++;
return &(∗q)→bst data;

}
3. The first item to be inserted have the value of the original tree’s root. After that, at
each step, we can insert either an item with the value of either child x of any node in the
original tree corresponding to a node y already in the copy tree, as long as x ’s value is not
already in the copy tree.

4. The function below traverses tree in “level order”. That is, it visits the root, then the
root’s children, then the children of the root’s children, and so on, so that all the nodes at
a particular level in the tree are visited in sequence.
See also: [Sedgewick 1998], Program 5.16.

§621 〈Level-order traversal 621 〉 ≡
/∗ Calls visit for each of the nodes in tree in level order.

354 GNU libavl 2.0.1

Returns nonzero if successful, zero if out of memory. ∗/
static int bst traverse level order (struct bst table ∗tree, bst item func ∗visit) {

struct bst node ∗∗queue;
size t head , tail ;
if (tree→bst count == 0)

return 1;
queue = tree→bst alloc→libavl malloc (tree→bst alloc, sizeof ∗queue ∗ tree→bst count);
if (queue == NULL)

return 0;
head = tail = 0;
queue[head++] = tree→bst root ;
while (head != tail) {

struct bst node ∗cur = queue[tail++];
visit (cur→bst data, tree→bst param);
if (cur→bst link [0] != NULL)

queue[head++] = cur→bst link [0];
if (cur→bst link [1] != NULL)

queue[head++] = cur→bst link [1];
}
tree→bst alloc→libavl free (tree→bst alloc, queue);
return 1;

}

Section 4.7.1

1.

§622 〈Root insertion of existing node in arbitrary subtree 622 〉 ≡
/∗ Performs root insertion of n at root within tree.

Subtree root must not contain a node matching n.
Returns nonzero only if successful. ∗/

static int root insert (struct bst table ∗tree, struct bst node ∗∗root ,
struct bst node ∗n) {

struct bst node ∗pa[BST_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[BST_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k ; /∗ Stack height. ∗/
struct bst node ∗p; /∗ Traverses tree looking for insertion point. ∗/
assert (tree != NULL && n != NULL);
〈Step 1: Search for insertion point in arbitrary subtree 623 〉
〈Step 2: Insert n into arbitrary subtree 624 〉
〈Step 3: Move BST node to root 36 〉
return 1;

}
§623 〈Step 1: Search for insertion point in arbitrary subtree 623 〉 ≡

pa[0] = (struct bst node ∗) root ;
da[0] = 0;

Appendix D: Answers to All the Exercises 355

k = 1;
for (p = ∗root ; p != NULL; p = p→bst link [da[k − 1]]) {

int cmp = tree→bst compare (n→bst data, p→bst data, tree→bst param);
assert (cmp != 0);
if (k >= BST_MAX_HEIGHT)

return 0;
pa[k] = p;
da[k++] = cmp > 0;

}
This code is included in §622.

§624 〈Step 2: Insert n into arbitrary subtree 624 〉 ≡
pa[k − 1]→bst link [da[k − 1]] = n;
This code is included in §622 and §625.

2. The idea is to optimize for the common case but allow for fallback to a slower algorithm
that doesn’t require a stack when necessary.

§625 〈Robust root insertion of existing node in arbitrary subtree 625 〉 ≡
/∗ Performs root insertion of n at root within tree.

Subtree root must not contain a node matching n.
Never fails and will not rebalance tree. ∗/

static void root insert (struct bst table ∗tree, struct bst node ∗∗root ,
struct bst node ∗n) {

struct bst node ∗pa[BST_MAX_HEIGHT]; /∗ Nodes on stack. ∗/
unsigned char da[BST_MAX_HEIGHT]; /∗ Directions moved from stack nodes. ∗/
int k ; /∗ Stack height. ∗/
int overflow = 0; /∗ Set nonzero if stack overflowed. ∗/
struct bst node ∗p; /∗ Traverses tree looking for insertion point. ∗/
assert (tree != NULL && n != NULL);
〈Step 1: Robustly search for insertion point in arbitrary subtree 626 〉
〈Step 2: Insert n into arbitrary subtree 624 〉
〈Step 3: Robustly move BST node to root 627 〉

}
If the stack overflows while we’re searching for the insertion point, we stop keeping track

of any nodes but the last one and set overflow so that later we know that overflow occurred:
§626 〈Step 1: Robustly search for insertion point in arbitrary subtree 626 〉 ≡

pa[0] = (struct bst node ∗) root ;
da[0] = 0;
k = 1;
for (p = ∗root ; p != NULL; p = p→bst link [da[k − 1]]) {

int cmp = tree→bst compare (n→bst data, p→bst data, tree→bst param);
assert (cmp != 0);
if (k >= BST_MAX_HEIGHT) {

overflow = 1;
k−−;

}

356 GNU libavl 2.0.1

pa[k] = p;
da[k++] = cmp > 0;

}
This code is included in §625.

Once we’ve inserted the node, we deal with the rotation in the same way as before if
there was no overflow. If overflow occurred, we instead do the rotations one by one, with a
full traversal from ∗root every time:

§627 〈Step 3: Robustly move BST node to root 627 〉 ≡
if (!overflow)

{ 〈Step 3: Move BST node to root 36 〉 }
else {

while (∗root != n) {
struct bst node ∗∗r ; /∗ Link to node to rotate. ∗/
struct bst node ∗q ; /∗ Node to rotate. ∗/
int dir ;
for (r = root ; ; r = &q→bst link [dir]) {

q = ∗r ;
dir = 0 < tree→bst compare (n→bst data, q→bst data, tree→bst param);
if (q→bst link [dir] == n)

break;
}
if (dir == 0) {

q→bst link [0] = n→bst link [1];
n→bst link [1] = q ;

} else {
q→bst link [1] = n→bst link [0];
n→bst link [0] = q ;

}
∗r = n;

}
}
This code is included in §625.

3. One insertion order that does not require much stack is ascending order. If we insert
1. . . 4 at the root in ascending order, for instance, we get a BST that looks like this:

1

2

3

4

If we then insert node 5, it will immediately be inserted as the right child of 4, and then
a left rotation will make it the root, and we’re back where we started without ever using
more than one stack entry. Other obvious pathological orders such as descending order and
“zig-zag” order behave similarly.

Appendix D: Answers to All the Exercises 357

One insertion order that does require an arbitrary amount of stack space is to first insert
1. . .n in ascending order, then the single item 0. Each of the first group of insertions requires
only one stack entry (except the first, which does not use any), but the final insertion uses
n − 1.

If we’re interested in high average consumption of stack space, the pattern consisting
of a series of ascending insertions (n / 2 + 1). . .n followed by a second ascending series
1. . . (n / 2), for even n, is most effective. For instance, each insertion for insertion order 6,
7, 8, 9, 10, 1, 2, 3, 4, 5 requires 0, 1, 1, 1, 1, 5, 6, 6, 6, 6 stack entries, respectively, for a
total of 33.

These are, incidentally, the best possible results in each category, as determined by
exhaustive search over the 10! ≡ 3,628,800 possible root insertion orders for trees of 10
nodes. (Thanks to Richard Heathfield for suggesting exhaustive search.)

Section 4.8

1. Add this before the top-level else clause in 〈Step 2: Delete BST node 39 〉:
§628 〈Case 1.5 in BST deletion 628 〉 ≡

else if (p→bst link [0] == NULL) q→bst link [dir] = p→bst link [1];

2. Be sure to look at Exercise 3 before actually making this change.
§629 〈Case 3 in BST deletion, alternate version 629 〉 ≡

struct bst node ∗s = r→bst link [0];
while (s→bst link [0] != NULL) {

r = s;
s = r→bst link [0];

}
p→bst data = s→bst data;
r→bst link [0] = s→bst link [1];
p = s;

We could, indeed, make similar changes to the other cases, but for these cases the code
would become more complicated, not simpler.

3. The semantics for Libavl traversers only invalidate traversers with the deleted item
selected, but the revised code would actually free the node of the successor to that item.
Because struct bst traverser keeps a pointer to the struct bst node of the current item,
attempts to use a traverser that had selected the successor of the deleted item would result
in undefined behavior.

Some other binary tree libraries have looser semantics on their traversers, so they can
afford to use this technique.

Section 4.9.1

1. It would probably be faster to check before each call rather than after, because this
way many calls would be avoided. However, it might be more difficult to maintain the
code, because we would have to remember to check for a null pointer before every call. For
instance, the call to traverse recursive() within walk() might easily be overlooked. Which

358 GNU libavl 2.0.1

is “better” is therefore a toss-up, dependent on a program’s goals and the programmer’s
esthetic sense.

2.

§630 〈Recursive traversal of BST, using nested function 630 〉 ≡
void walk (struct bst table ∗tree, bst item func ∗action, void ∗param) {

void traverse recursive (struct bst node ∗node) {
if (node != NULL) {

traverse recursive (node→bst link [0]);
action (node→bst data, param);
traverse recursive (node→bst link [1]);

}
}
assert (tree != NULL && action != NULL);
traverse recursive (tree→bst root);

}

Section 4.9.2

1a. First of all, a minimal-height binary tree of n nodes has a height of about log2 n, that is,
starting from the root and moving only downward, you can visit at most n nodes (including
the root) without running out of nodes. Examination of the code should reveal to you that
only moving down to the left pushes nodes on the stack and only moving upward pops
nodes off. What’s more, the first thing the code does is move as far down to the left as it
can. So, the maximum height of the stack in a minimum-height binary tree of n nodes is
the binary tree’s height, or, again, about log2 n.

1b. If a binary tree has only left children, as does the BST on the left below, the stack will
grow as tall as the tree, to a height of n. Conversely, if a binary tree has only right children,
as does the BST on the right below, no nodes will be pushed onto the stack at all.

1

2

3

4 1

2

3

4

1c. It’s only acceptable if it’s known that the stack will not exceed the fixed maximum
height (or if the program aborting with an error is itself acceptable). Otherwise, you should
use a recursive method (but see part (e) below), or a dynamically extended stack, or a
balanced binary tree library.

1d. Keep in mind this is not the only way or necessarily the best way to handle stack
overflow. Our final code for tree traversal will rebalance the tree when it grows too tall.

§631 〈 Iterative traversal of BST, with dynamically allocated stack 631 〉 ≡
static void traverse iterative (struct bst node ∗node, bst item func ∗action, void ∗param) {

struct bst node ∗∗stack = NULL;
size t height = 0;

Appendix D: Answers to All the Exercises 359

size t max height = 0;
for (;;) {

while (node != NULL) {
if (height >= max height) {

max height = max height ∗ 2 + 8;
stack = realloc (stack , sizeof ∗stack ∗ max height);
if (stack == NULL) {

fprintf (stderr , "outÃofÃmemory\n");
exit (EXIT_FAILURE);

}
}
stack [height++] = node;
node = node→bst link [0];

}
if (height == 0)

break;
node = stack [−−height];
action (node→bst data, param);
node = node→bst link [1];

}
free (stack);

}
1e. Yes, traverse recursive() can run out of memory, because its arguments must be stored
somewhere by the compiler. Given typical compilers, it will consume more memory per call
than traverse iterative() will per item on the stack, because each call includes two arguments
not pushed on traverse iterative()’s stack, plus any needed compiler-specific bookkeeping
information.

Section 4.9.2.1

1. After calling bst balance(), the structure of the binary tree may have changed completely,
so we need to “find our place” again by setting up the traverser structure as if the traversal
had been done on the rebalanced tree all along. Specifically, members node, stack [], and
height of struct traverser need to be updated.

It is easy to set up struct traverser in this way, given the previous node in inorder
traversal, which we’ll call prev . Simply search the tree from the new root to find this
node. Along the way, because the stack is used to record nodes whose left subtree we are
examining, push nodes onto the stack as we move left down the tree. Member node receives
prev→bst link [1], just as it would have if no overflow had occurred.

A small problem with this approach is that it requires knowing the previous node in
inorder, which is neither explicitly noted in struct traverser nor easy to find out. But it
is easy to find out the next node: it is the smallest-valued node in the binary tree rooted
at the node we were considering when the stack overflowed. (If you need convincing, refer
to the code for next item() above: the while loop descends to the left, pushing nodes as it
goes, until it hits a NULL pointer, then the node pushed last is popped and returned.) So

360 GNU libavl 2.0.1

we can return this as the next node in inorder while setting up the traverser to return the
nodes after it.

Here’s the code:
§632 〈Handle stack overflow during BST traversal 632 〉 ≡

struct bst node ∗prev , ∗iter ;
prev = node;
while (prev→bst link [0] != NULL)

prev = prev→bst link [0];
bst balance (trav→table);
trav→height = 0;
for (iter = trav→table→bst root ; iter != prev ;)

if (trav→table→bst compare (prev→bst data, iter→bst data, trav→table→bst param) < 0) {
trav→stack [trav→height++] = iter ;
iter = iter→bst link [0];

}
else iter = iter→bst link [1];

trav→node = iter→bst link [1];
return prev→bst data;

Without this code, it is not necessary to have member table in struct traverser.

2. It is possible to write prev item() given our current next item(), but the result is not very
efficient, for two reasons, both related to the way that struct traverser is used. First, the
structure doesn’t contain a pointer to the current item. Second, its stack doesn’t contain
pointers to trees that must be descended to the left to find a predecessor node, only those
that must be descended to the right to find a successor node.

The next section will develop an alternate, more general method for traversal that avoids
these problems.

Section 4.9.3

1. The bst probe() function can’t disturb any traversals. A change in the tree is only
problematic for a traverser if it deletes the currently selected node (which is explicitly
undefined: see Section 2.10 [Traversers], page 15) or if it shuffles around any of the nodes
that are on the traverser’s stack. An insertion into a tree only creates new leaves, so it can’t
cause either of those problems, and there’s no need to increment the generation number.

The same logic applies to bst t insert(), presented later.
On the other hand, an insertion into the AVL and red-black trees discussed in the next

two chapters can cause restructuring of the tree and thus potentially disturb ongoing traver-
sals. For this reason, the insertion functions for AVL and red-black trees will increment the
tree’s generation number.

2. First, trav refresh() is only called from bst t next() and bst t prev(), and these functions
are mirrors of each other, so we need only show it for one of them.

Second, all of the traverser functions check the stack height, so these will not cause an
item to be initialized at too high a height, nor will bst t next() or bst t prev() increase the
stack height above its limit.

Appendix D: Answers to All the Exercises 361

Since the traverser functions won’t force a too-tall stack directly, this leaves the other
functions. Only functions that modify the tree could cause problems, by pushing an item
farther down in the tree.

There are only four functions that modify a tree. The insertion functions bst probe() and
bst t insert() can’t cause problems, because they add leaves but never move around nodes.
The deletion function bst delete() does move around nodes in case 3, but it always moves
them higher in the tree, never lower. Finally, bst balance() always ensures that all nodes in
the resultant tree are within the tree’s height limit.

3. This won’t work because the stack may contain pointers to nodes that have been deleted
and whose memory have been freed. In ANSI C89 and C99, any use of a pointer to an
object after the end of its lifetime results in undefined behavior, even seemingly innocuous
uses such as pointer comparisons. What’s worse, the memory for the node may already
have been recycled for use for another, different node elsewhere in the tree.

This approach does work if there are never any deletions in the tree, or if we use some
kind of generation number for each node that we store along with each stack entry. The
latter would be overkill unless comparisons are very expensive and the traversals in changing
trees are common. Another possibility would be to somehow only select this behavior if
there have been no deletions in the binary tree since the traverser was last used. This could
be done, for instance, with a second generation number in the binary tree incremented only
on deletions, with a corresponding number kept in the traverser.

The following reimplements trav refresh() to include this optimization. As noted, it will
not work if there are any deletions in the tree. It does work for traversers that must be
refreshed due to, e.g., rebalancing.

§633 〈BST traverser refresher, with caching 633 〉 ≡
/∗ Refreshes the stack of parent pointers in trav

and updates its generation number.
Will *not* work if any deletions have occurred in the tree. ∗/

static void trav refresh (struct bst traverser ∗trav) {
assert (trav != NULL);
trav→bst generation = trav→bst table→bst generation;
if (trav→bst node != NULL) {

bst comparison func ∗cmp = trav→bst table→bst compare;
void ∗param = trav→bst table→bst param;
struct bst node ∗node = trav→bst node;
struct bst node ∗i = trav→bst table→bst root ;
size t height = 0;
if (trav→bst height > 0 && i == trav→bst stack [0])

for (; height < trav→bst height ; height++) {
struct bst node ∗next = trav→bst stack [height + 1];
if (i→bst link [0] != next && i→bst link [1] != next)

break;
i = next ;

}
while (i != node) {

assert (height < BST_MAX_HEIGHT);

362 GNU libavl 2.0.1

assert (i != NULL);
trav→bst stack [height++] = i ;
i = i→bst link [cmp (node→bst data, i→bst data, param) > 0];

}
trav→bst height = height ;

}
}

Section 4.9.3.2

1. It only calls itself if it runs out of stack space. Its call to bst balance() right before the
recursive call ensures that the tree is short enough to fit within the stack, so the recursive
call cannot overflow.

Section 4.9.3.6

1. The assignment statements are harmless, but memcpy() of overlapping regions produces
undefined behavior.

Section 4.10.1

1a. Notice the use of & instead of && below. This ensures that both link fields get
initialized, so that deallocation can be done in a simple way. If && were used instead then
we wouldn’t have any way to tell whether (∗y)→bst link [1] had been initialized.

§634 〈Robust recursive copy of BST, take 1 634 〉 ≡
/∗ Stores in ∗y a new copy of tree rooted at x .

Returns nonzero if successful, or zero if memory was exhausted.∗/
static int bst robust copy recursive 1 (struct bst node ∗x , struct bst node ∗∗y) {

if (x != NULL) {
∗y = malloc (sizeof ∗∗y);
if (∗y == NULL)

return 0;
(∗y)→bst data = x→bst data;
if (!(bst robust copy recursive 1 (x→bst link [0], &(∗y)→bst link [0])

& bst robust copy recursive 1 (x→bst link [1], &(∗y)→bst link [1]))) {
bst deallocate recursive (∗y);
∗y = NULL;
return 0;

}
}
else ∗y = NULL;
return 1;

}
Here’s a needed auxiliary function:

§635 〈Recursive deallocation function 635 〉 ≡

Appendix D: Answers to All the Exercises 363

static void bst deallocate recursive (struct bst node ∗node) {
if (node == NULL)

return;
bst deallocate recursive (node→bst link [0]);
bst deallocate recursive (node→bst link [1]);
free (node);

}
1b.

§636 〈Robust recursive copy of BST, take 2 636 〉 ≡
static struct bst node error node;
/∗ Makes and returns a new copy of tree rooted at x .

If an allocation error occurs, returns &error node. ∗/
static struct bst node ∗bst robust copy recursive 2 (struct bst node ∗x) {

struct bst node ∗y ;
if (x == NULL)

return NULL;
y = malloc (sizeof ∗y);
if (y == NULL)

return &error node;
y→bst data = x→bst data;
y→bst link [0] = bst robust copy recursive 2 (x→bst link [0]);
y→bst link [1] = bst robust copy recursive 2 (x→bst link [1]);
if (y→bst link [0] == &error node || y→bst link [1] == &error node) {

bst deallocate recursive (y);
return &error node;

}
return y ;

}
2. Here’s one way to do it, which is simple but perhaps not the fastest possible.

§637 〈Robust recursive copy of BST, take 3 637 〉 ≡
/∗ Copies tree rooted at x to y , which latter is allocated but not yet initialized.

Returns one if successful, zero if memory was exhausted.
In the latter case y is not freed but any partially allocated
subtrees are. ∗/

static int bst robust copy recursive 3 (struct bst node ∗x , struct bst node ∗y) {
y→bst data = x→bst data;
if (x→bst link [0] != NULL) {

y→bst link [0] = malloc (sizeof ∗y→bst link [0]);
if (y→bst link [0] == NULL)

return 0;
if (!bst robust copy recursive 3 (x→bst link [0], y→bst link [0])) {

free (y→bst link [0]);
return 0;

}

364 GNU libavl 2.0.1

}
else y→bst link [0] = NULL;
if (x→bst link [1] != NULL) {

y→bst link [1] = malloc (sizeof ∗y→bst link [1]);
if (y→bst link [1] == NULL)

return 0;
if (!bst robust copy recursive 3 (x→bst link [1], y→bst link [1])) {

bst deallocate recursive (y→bst link [0]);
free (y→bst link [1]);
return 0;

}
}
else y→bst link [1] = NULL;
return 1;

}

Section 4.10.2

1. Here is one possibility.
§638 〈 Intermediate step between bst copy recursive 2 () and bst copy iterative() 638 〉 ≡

/∗ Copies org to a newly created tree, which is returned. ∗/
struct bst table ∗bst copy iterative (const struct bst table ∗org) {

struct bst node ∗stack [2 ∗ (BST_MAX_HEIGHT + 1)];
int height = 0;
struct bst table ∗new ;
const struct bst node ∗x ;
struct bst node ∗y ;
new = bst create (org→bst compare, org→bst param, org→bst alloc);
new→bst count = org→bst count ;
if (new→bst count == 0)

return new ;
x = (const struct bst node ∗) &org→bst root ;
y = (struct bst node ∗) &new→bst root ;
for (;;) {

while (x→bst link [0] != NULL) {
y→bst link [0] = org→bst alloc→libavl malloc (org→bst alloc,

sizeof ∗y→bst link [0]);
stack [height++] = (struct bst node ∗) x ;
stack [height++] = y ;
x = x→bst link [0];
y = y→bst link [0];

}
y→bst link [0] = NULL;
for (;;) {

y→bst data = x→bst data;

Appendix D: Answers to All the Exercises 365

if (x→bst link [1] != NULL) {
y→bst link [1] = org→bst alloc→libavl malloc (org→bst alloc,

sizeof ∗y→bst link [1]);
x = x→bst link [1];
y = y→bst link [1];
break;

}
else y→bst link [1] = NULL;
if (height <= 2)

return new ;
y = stack [−−height];
x = stack [−−height];

}
}

}

Section 4.11.1

1. bst copy() can set bst data to NULL when memory allocation fails.

Section 4.13

1. Factoring out recursion is troublesome in this case. Writing the loop with an explicit
stack exposes more explicitly the issue of stack overflow. Failure on stack overflow is not
acceptable, because it would leave both trees in disarray, so we handle it by dropping back
to a slower algorithm that does not require a stack.

This code also makes use of root insert() from 〈Robust root insertion of existing node
in arbitrary subtree 625 〉.

§639 〈BST join function, iterative version 639 〉 ≡
/∗ Adds to tree all the nodes in the tree rooted at p. ∗/
static void fallback join (struct bst table ∗tree, struct bst node ∗p) {

struct bst node ∗q ;
for (; p != NULL; p = q)

if (p→bst link [0] == NULL) {
q = p→bst link [1];
p→bst link [0] = p→bst link [1] = NULL;
root insert (tree, &tree→bst root , p);

}
else {

q = p→bst link [0];
p→bst link [0] = q→bst link [1];
q→bst link [1] = p;

}
}
/∗ Joins a and b, which must be disjoint and have compatible comparison functions.

b is destroyed in the process. ∗/

366 GNU libavl 2.0.1

void bst join (struct bst table ∗ta, struct bst table ∗tb) {
size t count = ta→bst count + tb→bst count ;

if (ta→bst root == NULL)
ta→bst root = tb→bst root ;

else if (tb→bst root != NULL) {
struct bst node ∗∗pa[BST_MAX_HEIGHT];
struct bst node ∗qa[BST_MAX_HEIGHT];
int k = 0;

pa[k] = &ta→bst root ;
qa[k++] = tb→bst root ;
while (k > 0) {

struct bst node ∗∗a = pa[−−k];
struct bst node ∗b = qa[k];

for (;;) {
struct bst node ∗b0 = b→bst link [0];
struct bst node ∗b1 = b→bst link [1];
b→bst link [0] = b→bst link [1] = NULL;
root insert (ta, a, b);

if (b1 != NULL) {
if (k < BST_MAX_HEIGHT) {

pa[k] = &(∗a)→bst link [1];
qa[k] = b1 ;
if (∗pa[k] != NULL)

k++;
else ∗pa[k] = qa[k];

} else {
int j ;

fallback join (ta, b0);
fallback join (ta, b1);
for (j = 0; j < k ; j++)

fallback join (ta, qa[j]);

ta→bst count = count ;
free (tb);
bst balance (ta);
return;

}
}
a = &(∗a)→bst link [0];
b = b0 ;
if (∗a == NULL) {

∗a = b;
break;

} else if (b == NULL)
break;

}

Appendix D: Answers to All the Exercises 367

}
}
ta→bst count = count ;
free (tb);

}

Section 4.14.1

1. Functions not used at all are bst insert(), bst replace(), bst t replace(), bst malloc(), and
bst free().

Functions used explicitly within test() or functions that it calls are bst create(),
bst find(), bst probe(), bst delete(), bst t init(), bst t first(), bst t last(), bst t insert(),
bst t find(), bst t copy(), bst t next(), bst t prev(), bst t cur(), bst copy(), and bst destroy().

The trav refresh() function is called indirectly by modifying the tree during traversal.
The copy error recovery() function is called if a memory allocation error occurs during

bst copy(). The bst balance() function, and therefore also tree to vine(), vine to tree(), and
compress(), are called if a stack overflow occurs. It is possible to force both these behaviors
with command-line options to the test program.

2. Some kinds of errors mean that we can keep going and test other parts of the code.
Other kinds of errors mean that something is deeply wrong, and returning without cleanup
is the safest action short of terminating the program entirely. The third category is memory
allocation errors. In our test program these are always caused intentionally in order to test
out the BST functions’ error recovery abilities, so a memory allocation error is not really
an error at all, and we clean up and return successfully. (A real memory allocation error
will cause the program to abort in the memory allocator. See the definition of mt allocate()
within 〈Memory tracker 126 〉.)

Section 4.14.1.1

1. The definition of size t differs from one compiler to the next. All we know about it for
sure is that it’s an unsigned type appropriate for representing the size of an object. So we
must convert it to some known type in order to pass it to printf (), because printf (), having
a variable number of arguments, does not know what type to convert it into.

Incidentally, C99 solves this problem by providing a ‘z’ modifier for printf () conversions,
so that we could use "%zu" to print out size t values without the need for a cast.
See also: [ISO 1999], section 7.19.6.1.

2. Yes.

Section 4.14.2

1.

§640 〈Generate random permutation of integers 640 〉 ≡
/∗ Fills the n elements of array [] with a random permutation of the

integers between 0 and n − 1. ∗/

368 GNU libavl 2.0.1

static void permuted integers (int array [], size t n) {
size t i ;
for (i = 0; i < n; i++)

array [i] = i ;
for (i = 0; i < n; i++) {

size t j = i + (unsigned) rand () / (RAND_MAX / (n − i) + 1);
int t = array [j];
array [j] = array [i];
array [i] = t ;

}
}
This code is included in §642.

2. All it takes is a preorder traversal. If the code below is confusing, try looking back at
〈 Initialize smaller and larger within binary search tree 616 〉.

§641 〈Generate permutation for balanced tree 641 〉 ≡
/∗ Generates a list of integers that produce a balanced tree when

inserted in order into a binary tree in the usual way.
min and max inclusively bound the values to be inserted.
Output is deposited starting at ∗array . ∗/

static void gen balanced tree (int min, int max , int ∗∗array) {
int i ;
if (min > max)

return;
i = (min + max + 1) / 2;
∗(∗array)++ = i ;
gen balanced tree (min, i − 1, array);
gen balanced tree (i + 1, max , array);

}
This code is included in §642.

3.

§642 〈 Insertion and deletion order generation 642 〉 ≡
〈Generate random permutation of integers 640 〉
〈Generate permutation for balanced tree 641 〉
/∗ Generates a permutation of the integers 0 to n − 1 into

insert [] according to insert order . ∗/
static void gen insertions (size t n, enum insert order insert order , int insert []) {

size t i ;
switch (insert order) {

case INS_RANDOM:
permuted integers (insert , n);
break;

case INS_ASCENDING:
for (i = 0; i < n; i++)

insert [i] = i ;

Appendix D: Answers to All the Exercises 369

break;
case INS_DESCENDING:

for (i = 0; i < n; i++)
insert [i] = n − i − 1;

break;
case INS_BALANCED:

gen balanced tree (0, n − 1, &insert);
break;

case INS_ZIGZAG:
for (i = 0; i < n; i++)

if (i % 2 == 0) insert [i] = i / 2;
else insert [i] = n − i / 2 − 1;

break;
case INS_ASCENDING_SHIFTED:

for (i = 0; i < n; i++) {
insert [i] = i + n / 2;
if ((size t) insert [i] >= n)

insert [i] −= n;
}
break;

case INS_CUSTOM:
for (i = 0; i < n; i++)

if (scanf ("%d", &insert [i]) == 0)
fail ("errorÃreadingÃinsertionÃorderÃfromÃstdin");

break;
default:

assert (0);
}

}
/∗ Generates a permutation of the integers 0 to n − 1 into

delete[] according to delete order and insert []. ∗/
static void gen deletions (size t n, enum delete order delete order ,

const int ∗insert , int ∗delete) {
size t i ;
switch (delete order) {

case DEL_RANDOM:
permuted integers (delete, n);
break;

case DEL_REVERSE:
for (i = 0; i < n; i++)

delete[i] = insert [n − i − 1];
break;

case DEL_SAME:
for (i = 0; i < n; i++)

delete[i] = insert [i];

370 GNU libavl 2.0.1

break;
case DEL_CUSTOM:

for (i = 0; i < n; i++)
if (scanf ("%d", &delete[i]) == 0)

fail ("errorÃreadingÃdeletionÃorderÃfromÃstdin");
break;

default:
assert (0);

}
}
This code is included in §97.

4. The function below is carefully designed. It uses time() to obtain the current time.
The alternative clock() is a poor choice because it measures CPU time used, which is often
more or less constant among runs. The actual value of a time t is not portable, so it
computes a “hash” of the bytes in it using a multiply-and-add technique. The factor used
for multiplication normally comes out as 257, a prime and therefore a good candidate.
See also: [Knuth 1998a], section 3.2.1; [Aho 1986], section 7.6.

§643 〈Random number seeding 643 〉 ≡
/∗ Choose and return an initial random seed based on the current time.

Based on code by Lawrence Kirby <fred@genesis.demon.co.uk>. ∗/
unsigned time seed (void) {

time t timeval ; /∗ Current time. ∗/
unsigned char ∗ptr ; /∗ Type punned pointed into timeval. ∗/
unsigned seed ; /∗ Generated seed. ∗/
size t i ;
timeval = time (NULL);
ptr = (unsigned char ∗) &timeval ;
seed = 0;
for (i = 0; i < sizeof timeval ; i++)

seed = seed ∗ (UCHAR_MAX + 2u) + ptr [i];
return seed ;

}
This code is included in §97.

Section 4.14.3

1.

§644 〈Overflow testers 124 〉 +≡
static int test bst t last (struct bst table ∗tree, int n) {

struct bst traverser trav ;
int ∗last ;
last = bst t last (&trav , tree);
if (last == NULL || ∗last != n − 1) {

printf ("ÃÃÃÃLastÃitemÃtestÃfailed:ÃexpectedÃ%d,ÃgotÃ%d\n",

Appendix D: Answers to All the Exercises 371

n − 1, last != NULL ? ∗last : −1);
return 0;

}
return 1;

}
static int test bst t find (struct bst table ∗tree, int n) {

int i ;
for (i = 0; i < n; i++) {

struct bst traverser trav ;
int ∗iter ;
iter = bst t find (&trav , tree, &i);
if (iter == NULL || ∗iter != i) {

printf ("ÃÃÃÃFindÃitemÃtestÃfailed:ÃlookedÃforÃ%d,ÃgotÃ%d\n",
i , iter != NULL ? ∗iter : −1);

return 0;
}

}
return 1;

}
static int test bst t insert (struct bst table ∗tree, int n) {

int i ;
for (i = 0; i < n; i++) {

struct bst traverser trav ;
int ∗iter ;
iter = bst t insert (&trav , tree, &i);
if (iter == NULL || iter == &i || ∗iter != i) {

printf ("ÃÃÃÃInsertÃitemÃtestÃfailed:ÃinsertedÃdupÃ%d,ÃgotÃ%d\n",
i , iter != NULL ? ∗iter : −1);

return 0;
}

}
return 1;

}
static int test bst t next (struct bst table ∗tree, int n) {

struct bst traverser trav ;
int i ;
bst t init (&trav , tree);
for (i = 0; i < n; i++) {

int ∗iter = bst t next (&trav);
if (iter == NULL || ∗iter != i) {

printf ("ÃÃÃÃNextÃitemÃtestÃfailed:ÃexpectedÃ%d,ÃgotÃ%d\n",
i , iter != NULL ? ∗iter : −1);

return 0;
}

}

372 GNU libavl 2.0.1

return 1;
}
static int test bst t prev (struct bst table ∗tree, int n) {

struct bst traverser trav ;
int i ;
bst t init (&trav , tree);
for (i = n − 1; i >= 0; i−−) {

int ∗iter = bst t prev (&trav);
if (iter == NULL || ∗iter != i) {

printf ("ÃÃÃÃPreviousÃitemÃtestÃfailed:ÃexpectedÃ%d,ÃgotÃ%d\n",
i , iter != NULL ? ∗iter : −1);

return 0;
}

}
return 1;

}
static int test bst copy (struct bst table ∗tree, int n) {

struct bst table ∗copy = bst copy (tree, NULL, NULL, NULL);
int okay = compare trees (tree→bst root , copy→bst root);
bst destroy (copy , NULL);
return okay ;

}

Section 4.14.4

1. Attempting to apply an allocation policy to allocations of zero-byte blocks is silly. How
could a failure be indicated, given that one of the successful results for an allocation of 0
bytes is NULL? At any rate, Libavl never calls bst allocate() with a size argument of 0.
See also: [ISO 1990], section 7.10.3.

Section 4.15

1. We’ll use bsts , short for “binary search tree with sentinel”, as the prefix for these
functions. First, we need node and tree structures:

§645 〈BSTS structures 645 〉 ≡
/∗ Node for binary search tree with sentinel. ∗/
struct bsts node {

struct bsts node ∗link [2];
int data;

};
/∗ Binary search tree with sentinel. ∗/
struct bsts tree {

struct bsts node ∗root ;
struct bsts node sentinel ;
struct libavl allocator ∗alloc;

Appendix D: Answers to All the Exercises 373

};
This code is included in §649.

Searching is simple:
§646 〈BSTS functions 646 〉 ≡

/∗ Returns nonzero only if item is in tree. ∗/
int bsts find (struct bsts tree ∗tree, int item) {

const struct bsts node ∗node;
tree→sentinel .data = item;
node = tree→root ;
while (item != node→data)

if (item < node→data) node = node→link [0];
else node = node→link [1];

return node != &tree→sentinel ;
}
See also §647.

This code is included in §649.

Insertion is just a little more complex, because we have to keep track of the link that we
just came from (alternately, we could divide the function into multiple cases):

§647 〈BSTS functions 646 〉 +≡
/∗ Inserts item into tree, if it is not already present. ∗/
void bsts insert (struct bsts tree ∗tree, int item) {

struct bsts node ∗∗q = &tree→root ;
struct bsts node ∗p = tree→root ;
tree→sentinel .data = item;
while (item != p→data) {

int dir = item > p→data;
q = &p→link [dir];
p = p→link [dir];

}
if (p == &tree→sentinel) {

∗q = tree→alloc→libavl malloc (tree→alloc, sizeof ∗∗q);
if (∗q == NULL) {

fprintf (stderr , "outÃofÃmemory\n");
exit (EXIT_FAILURE);

}
(∗q)→link [0] = (∗q)→link [1] = &tree→sentinel ;
(∗q)→data = item;

}
}

Our test function will just insert a collection of integers, then make sure that all of them
are in the resulting tree. This is not as thorough as it could be, and it doesn’t bother to
free what it allocates, but it is good enough for now:

§648 〈BSTS test 648 〉 ≡
/∗ Tests BSTS functions.

374 GNU libavl 2.0.1

insert and delete must contain some permutation of values
0. . .n − 1. ∗/

int test correctness (struct libavl allocator ∗alloc, int ∗insert ,
int ∗delete, int n, int verbosity) {

struct bsts tree tree;
int okay = 1;
int i ;

tree.root = &tree.sentinel ;
tree.alloc = alloc;

for (i = 0; i < n; i++)
bsts insert (&tree, insert [i]);

for (i = 0; i < n; i++)
if (!bsts find (&tree, i)) {

printf ("%dÃshouldÃbeÃinÃtree,ÃbutÃisn’t\n", i);
okay = 0;

}
return okay ;

}
/∗ Not supported. ∗/
int test overflow (struct libavl allocator ∗alloc, int order [], int n, int verbosity) {

return 0;
}
This code is included in §649.

Function test() doesn’t free allocated nodes, resulting in a memory leak. You should fix
this if you are concerned about it.

Here’s the whole program:

§649 〈 bsts.c 649 〉 ≡
〈License 1 〉
#include 〈 assert.h 〉
#include 〈 stdio.h 〉
#include 〈 stdlib.h 〉
#include “test.h”

〈BSTS structures 645 〉
〈Memory allocator; tbl ⇒ bsts 5 〉
〈Default memory allocator header; tbl ⇒ bsts 7 〉
〈Default memory allocation functions; tbl ⇒ bsts 6 〉
〈BSTS functions 646 〉
〈BSTS test 648 〉
See also: [Bentley 2000], exercise 7 in chapter 13.

Chapter 5

Appendix D: Answers to All the Exercises 375

Section 5.4

1. In a BST, the time for an insertion or deletion is the time required to visit each node
from the root down to the node of interest, plus some time to perform the operation itself.
Functions bst probe() and bst delete() contain only a single loop each, which iterates once for
each node examined. As the tree grows, the time for the actual operation loses significance
and the total time for the operation becomes essentially proportional to the height of the
tree, which is approximately log2 n in the best case (see Section 5.1.1 [Analysis of AVL
Balancing Rule], page 109).

We were given that the additional work for rebalancing an AVL or red-black tree is at
most a constant amount multiplied by the height of the tree. Furthermore, the maximum
height of an AVL tree is 1.44 times the maximum height for the corresponding perfectly
balanced binary tree, and a red-black tree has a similar bound on its height. Therefore, for
trees with many nodes, the worst-case time required to insert or delete an item in a balanced
tree is a constant multiple of the time required for the same operation on an unbalanced
BST in the best case. In the formal terms of computer science, insertion and deletion in a
balanced tree are O(log n) operations, where n is the number of nodes in the tree.

In practice, operations on balanced trees of reasonable size are, at worst, not much slower
than operations on unbalanced binary trees and, at best, much faster.

Section 5.4.2

1. Variable y is only modified within 〈Step 1: Search AVL tree for insertion point 148 〉. If
y is set during the loop, it is set to p, which is always a non-null pointer within the loop.
So y can only be NULL if it is last set before the loop begins. If that is true, it will be NULL
only if tree→avl root == NULL. So, variable y can only be NULL if the AVL tree was empty
before the insertion.

A NULL value for y is a special case because later code assumes that y points to a node.

Section 5.4.3

1. No. Suppose that n is the new node, that p is its parent, and that p has a − balance
factor before n’s insertion (a similar argument applies if p’s balance factor is +). Then, for
n’s insertion to decrease p’s balance factor to −2, n would have to be the left child of p.
But if p had a − balance factor before the insertion, it already had a left child, so n cannot
be the new left of p. This is a contradiction, so case 3 will never be applied to the parent
of a newly inserted node.

2.

0

0

0

0

0

-

0

-

0

0

0

0 0

-

--

376 GNU libavl 2.0.1

In the leftmost tree, case 2 applies to the root’s left child and the root’s balance factor
does not change. In the middle tree, case 1 applies to the root’s left child and case 2 applies
to the root. In the rightmost tree, case 1 applies to the root’s left child and case 3 applies
to the root. The tree on the right requires rebalancing, and the others do not.

3. Type char may be signed or unsigned, depending on the C compiler and/or how the C
compiler is run. Also, a common use for subscripting an array with a character type is to
translate an arbitrary character to another character or a set of properties. For example,
this is a common way to implement the standard C functions from ctype.h. This means
that subscripting such an array with a char value can have different behavior when char
changes between signed and unsigned with different compilers (or with the same compiler
invoked with different options).

See also: [ISO 1990], section 6.1.2.5; [Kernighan 1988], section A4.2.

4. Here is one possibility:

§650 〈Step 3: Update balance factors after AVL insertion, with bitmasks 650 〉 ≡
for (p = y ; p != n; p = p→avl link [cache & 1], cache >>= 1)

if ((cache & 1) == 0)
p→avl balance−−;

else p→avl balance++;

Also, replace the declarations of da[] and k by these:

unsigned long cache = 0; /∗ Cached comparison results. ∗/
int k = 0; /∗ Number of cached comparison results. ∗/
and replace the second paragraph of code within the loop in step 1 by this:

if (p→avl balance != 0)
z = q , y = p, cache = 0, k = 0;

dir = cmp > 0;
if (dir)

cache |= 1ul << k ;
k++;

It is interesting to note that the speed difference between this version and the standard
version was found to be negligible, when compiled with full optimization under GCC (both
2.95.4 and 3.0.3) on x86.

Section 5.4.4

1. Because then y ’s right subtree would have height 1, so there’s no way that y could have
a +2 balance factor.

2. The value of y is set during the search for item to point to the closest node above the
insertion point that has a nonzero balance factor, so any node below y along this search
path, including x , must have had a 0 balance factor originally. All such nodes are updated
to have a nonzero balance factor later, during step 3. So x must have either a − or +
balance factor at the time of rebalancing.

3.1.

Appendix D: Answers to All the Exercises 377

+x

0 w

--y

⇒

0 x

- w

-- y

⇒
0x

0 w

0 y

3.2.

a
h

+x

b
h

- w

c
h-1

--y

d
h ⇒

a
h

0 x

b
h

-- w

c
h-1

-- y

d
h ⇒

a
h

0x

b
h

0 w

c
h-1

+ y

d
h

3.3.

a
h

+x

b
h-1

+ w

c
h

--y

d
h ⇒

a
h

- x

b
h-1

- w

c
h

-- y

d
h ⇒

a
h

-x

b
h-1

0 w

c
h

0 y

d
h

4. w should replace y as the left or right child of z . y != z→avl link [0] has the value 1 if y
is the right child of z , or 0 if y is the left child. So the overall expression replaces y with w
as a child of z .

The suggested substitution is a poor choice because if z == (struct avl node ∗) &tree→
root , z→avl link [1] is undefined.

5. Yes.

Section 5.5.2

1. This approach cannot be used in Libavl (see Exercise 4.8-3).
§651 〈Case 3 in AVL deletion, alternate version 651 〉 ≡

struct avl node ∗s;
da[k] = 1;
pa[k++] = p;
for (;;) {

da[k] = 0;
pa[k++] = r ;
s = r→avl link [0];
if (s→avl link [0] == NULL)

break;
r = s;

}
p→avl data = s→avl data;

378 GNU libavl 2.0.1

r→avl link [0] = s→avl link [1];
p = s;

2. We could, if we use the standard Libavl code for deletion case 3. The alternate version
in Exercise 1 modifies item data, which would cause the wrong value to be returned later.

Section 5.5.4

1. Tree y started out with a + balance factor, meaning that its right subtree is taller than
its left. So, even if y ’s left subtree had height 0, its right subtree has at least height 1,
meaning that y must have at least one right child.

2. Rebalancing is required at each level if, at every level of the tree, the deletion causes a
+2 or −2 balance factor at a node p while there is a +1 or −1 balance factor at p’s child
opposite the deletion.

For example, consider the AVL tree below:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Deletion of node 32 in this tree leads to a −2 balance factor on the left side of node 31,
causing a right rotation at node 31. This shortens the right subtree of node 28, causing it to
have a −2 balance factor, leading to a right rotation there. This shortens the right subtree
of node 20, causing it to have a −2 balance factor, forcing a right rotation there, too. Here
is the final tree:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Incidentally, our original tree was an example of a “Fibonacci tree”, a kind of binary
tree whose form is defined recursively, as follows. A Fibonacci tree of order 0 is an empty
tree and a Fibonacci tree of order 1 is a single node. A Fibonacci tree of order n ≥ 2 is
a node whose left subtree is a Fibonacci tree of order n − 1 and whose right subtree is a
Fibonacci tree of order n − 2. Our example is a Fibonacci tree of order 7. Any big-enough

Appendix D: Answers to All the Exercises 379

Fibonacci tree will exhibit this pathological behavior upon AVL deletion of its maximum
node.

Section 5.6

1. At this point in the code, p points to the avl data member of an struct avl node. We
want a pointer to the struct avl node itself. To do this, we just subtract the offset of the
avl data member within the structure. A cast to char ∗ is necessary before the subtraction,
because offsetof returns a count of bytes, and a cast to struct avl node ∗ afterward, to make
the result the right type.

Chapter 6

Section 6.1

1. It must be a complete binary tree of exactly 2n − 1 nodes.

If a red-black tree contains only red nodes, on the other hand, it cannot have more than
one node, because of rule 1.

2. If a red-black tree’s root is red, then we can transform it into an equivalent red-black
tree with a black root simply by recoloring the root. This cannot violate rule 1, because it
does not introduce a red node. It cannot violate rule 2 because it only affects the number of
black nodes along paths that pass through the root, and it affects all of those paths equally,
by increasing the number of black nodes along them by one.

If, on the other hand, a red-black tree has a black root, we cannot in general recolor it
to red, because this causes a violation of rule 1 if the root has a red child.

3. Yes and yes:

 ⇔

 ⇔

Section 6.2

1. C has a number of different namespaces. One of these is the namespace that contains
struct, union, and enum tags. Names of structure members are in a namespace separate
from this tag namespace, so it is okay to give an enum and a structure member the same
name. On the other hand, it would be an error to give, e.g., a struct and an enum the same
name.

380 GNU libavl 2.0.1

Section 6.4.2

1. Inserting a red node can sometimes be done without breaking any rules. Inserting a
black node will always break rule 2.

Section 6.4.3

1. We can’t have k == 1, because then the new node would be the root, and the root
doesn’t have a parent that could be red. We don’t need to rebalance k == 2, because the
new node is a direct child of the root, and the root is always black.

2. Yes, it would, but if d has a red node as its root, case 1 will be selected instead.

Section 6.5.1

1. If p has no left child, that is, it is a leaf, then obviously we cannot swap colors. Now
consider only the case where p does have a non-null left child x . Clearly, x must be red,
because otherwise rule 2 would be violated at p. This means that p must be black to avoid
a rule 1 violation. So the deletion will eliminate a black node, causing a rule 2 violation.
This is exactly the sort of problem that the rebalancing step is designed to deal with, so we
can rebalance starting from node x .

2. There are two cases in this algorithm, which uses a new struct avl node ∗ variable named
x . Regardless of which one is chosen, x has the same meaning afterward: it is the node
that replaced one of the children of the node at top of stack, and may be NULL if the node
removed was a leaf.

Case 1: If one of p’s child pointers is NULL, then p can be replaced by the other child,
or by NULL if both children are NULL:

§652 〈Step 2: Delete item from RB tree, alternate version 652 〉 ≡
if (p→rb link [0] == NULL || p→rb link [1] == NULL) {

x = p→rb link [0];
if (x == NULL)

x = p→rb link [1];
}
See also §653 and §654.

Case 2: If both of p’s child pointers are non-null, then we find p’s successor and replace
p’s data by the successor’s data, then delete the successor instead:

§653 〈Step 2: Delete item from RB tree, alternate version 652 〉 +≡
else {

struct rb node ∗y ;
pa[k] = p;
da[k++] = 1;
y = p→rb link [1];
while (y→rb link [0] != NULL) {

pa[k] = y ;
da[k++] = 0;

Appendix D: Answers to All the Exercises 381

y = y→rb link [0];
}
x = y→rb link [1];
p→rb data = y→rb data;
p = y ;

}
In either case, we need to update the node above the deleted node to point to x .

§654 〈Step 2: Delete item from RB tree, alternate version 652 〉 +≡
pa[k − 1]→rb link [da[k − 1]] = x ;
See also: [Cormen 1990], section 14.4.

Chapter 7

Section 7.2

1. An enumerated type is compatible with some C integer type, but the particular type is
up to the C compiler. Many C compilers will always pick int as the type of an enumeration
type. But we want to conserve space in the structure (see [No value for “tbstnodesizebrief”]),
so we specify unsigned char explicitly as the type.
See also: [ISO 1990], section 6.5.2.2; [ISO 1999], section 6.7.2.2.

Section 7.6

1. When we add a node to a formerly empty tree, this statement will set tree→tbst root ,
thereby breaking the if statement’s test.

Section 7.7

1. See Section 8.5.6 [Finding the Parent of a TBST Node], page 203. Function find parent()
is implemented in 〈Find parent of a TBST node 327 〉.

§655 〈Find TBST node to delete, with parent node algorithm 655 〉 ≡
p = tree→tbst root ;
if (p == NULL)

return NULL;
for (;;) {

int cmp = tree→tbst compare (item, p→tbst data, tree→tbst param);
if (cmp == 0)

break;
p = p→tbst link [cmp > 0];

}
q = find parent (tree, p);
dir = q→tbst link [0] != p;
See also: [Knuth 1997], exercise 2.3.1-19.

382 GNU libavl 2.0.1

2. Yes. We can bind a pointer and a tag into a single structure, then use that structure for
our links and for the root in the table structure.

/∗ A tagged link. ∗/
struct tbst link {

struct tbst node ∗tbst ptr ; /∗ Child pointer or thread. ∗/
unsigned char tbst tag ; /∗ Tag. ∗/

};
/∗ A threaded binary search tree node. ∗/
struct tbst node {

struct tbst link tbst link [2]; /∗ Links. ∗/
void ∗tbst data; /∗ Pointer to data. ∗/

};
/∗ Tree data structure. ∗/
struct tbst table {

struct tbst link tbst root ; /∗ Tree’s root; tag is unused. ∗/
tbst comparison func ∗tbst compare; /∗ Comparison function. ∗/
void ∗tbst param; /∗ Extra argument to tbst compare. ∗/
struct libavl allocator ∗tbst alloc; /∗ Memory allocator. ∗/
size t tbst count ; /∗ Number of items in tree. ∗/

};
The main disadvantage of this approach is in storage space: many machines have align-

ment restrictions for pointers, so the nonadjacent unsigned chars cause space to be wasted.
Alternatively, we could keep the current arrangement of the node structure and change
tbst root in struct tbst table from a pointer to an instance of struct tbst node.

3. Much simpler than the implementation given before:

§656 〈Case 4 in TBST deletion, alternate version 656 〉 ≡
struct tbst node ∗s = r→tbst link [0];
while (s→tbst tag [0] == TBST_CHILD) {

r = s;
s = r→tbst link [0];

}
p→tbst data = s→tbst data;

if (s→tbst tag [1] == TBST_THREAD) {
r→tbst tag [0] = TBST_THREAD;
r→tbst link [0] = p;

} else {
q = r→tbst link [0] = s→tbst link [1];
while (q→tbst tag [0] == TBST_CHILD)

q = q→tbst link [0];
q→tbst link [0] = p;

}
p = s;

This code is included in §658.

Appendix D: Answers to All the Exercises 383

4. If all the possible deletions from a given TBST are considered, then no link will be
followed more than once to update a left thread, and similarly for right threads. Averaged
over all the possible deletions, this is a constant. For example, take the following TBST:

0

1

2

3

4

5

6

7

Consider right threads that must be updated on deletion. Nodes 2, 3, 5, and 6 have right
threads pointing to them. To update the right thread to node 2, we follow the link to node
1; to update node 3’s, we move to 0, then 2; for node 5, we move to node 4; and for node
6, we move to 3, then 5. No link is followed more than once. Here’s a summary table:

Node Right Thread
Follows

Left Thread
Follows

0: (none) 2, 1

1: (none) (none)

2: 1 (none)

3: 0, 2 5, 4

4: (none) (none)

5: 4 (none)

6: 3, 5 7

7: (none) (none)
The important point here is that no number appears twice within a column.

Section 7.9

1. Suppose a node has a right thread. If the node has no left subtree, then the thread will
be followed immediately when the node is reached. If the node does have a left subtree, then
the left subtree will be traversed, and when the traversal is finished the node’s predecessor’s
right thread will be followed back to the node, then its right thread will be followed. The
node cannot be skipped, because all the nodes in its left subtree are less than it, so none of
the right threads in its left subtree can skip beyond it.

2. The biggest potential for optimization probably comes from tbst copy()’s habit of always
keeping the TBST fully consistent as it builds it, which causes repeated assignments to link
fields in order to keep threads correct at all times. The unthreaded BST copy function
bst copy() waited to initialize fields until it was ready for them. It may be possible, though
difficult, to do this in tbst copy() as well.

Inlining and specializing copy node() is a cheaper potential speedup.

384 GNU libavl 2.0.1

Chapter 8

Section 8.1

1. No: the compiler may insert padding between or after structure members. For example,
today (2002) the most common desktop computers have 32-bit pointers and and 8-bit chars.
On these systems, most compilers will pad out structures to a multiple of 32 bits. Under
these circumstances, struct tavl node is no larger than struct avl node, because (32 + 32
+ 8) and (32 + 32 + 8 + 8 + 8) both round up to the same multiple of 32 bits, or 96 bits.

Section 8.2

1. We just have to special-case the possibility that subtree b is a thread.

/∗ Rotates right at ∗yp. ∗/
static void rotate right (struct tavl node ∗∗yp) {

struct tavl node ∗y = ∗yp;
struct tavl node ∗x = y→tavl link [0];
if (x→tavl tag [1] == TAVL_THREAD) {

x→tavl tag [1] = TAVL_CHILD;
y→tavl tag [0] = TAVL_THREAD;
y→tavl link [0] = x ;

}
else y→tavl link [0] = x→tavl link [1];
x→tavl link [1] = y ;
∗yp = x ;

}
/∗ Rotates left at ∗xp. ∗/
static void rotate left (struct tavl node ∗∗xp) {

struct tavl node ∗x = ∗xp;
struct tavl node ∗y = x→tavl link [1];
if (y→tavl tag [0] == TAVL_THREAD) {

y→tavl tag [0] = TAVL_CHILD;
x→tavl tag [1] = TAVL_THREAD;
x→tavl link [1] = y ;

}
else x→tavl link [1] = y→tavl link [0];
y→tavl link [0] = x ;
∗xp = y ;

}

Section 8.4.2

1. Besides this change, the statement

z→tavl link [y != z→tavl link [0]] = w ;

Appendix D: Answers to All the Exercises 385

must be removed from 〈Step 4: Rebalance after TAVL insertion 304 〉, and copies added to
the end of 〈Rebalance TAVL tree after insertion in right subtree 308 〉 and 〈Rebalance for
− balance factor in TAVL insertion in left subtree 306 〉.

§657 〈Rebalance + balance in TAVL insertion in left subtree, alternate version 657 〉 ≡
w = x→tavl link [1];
rotate left (&y→tavl link [0]);
rotate right (&z→tavl link [y != z→tavl link [0]]);
if (w→tavl balance == −1) x→tavl balance = 0, y→tavl balance = +1;
else if (w→tavl balance == 0) x→tavl balance = y→tavl balance = 0;
else /∗ w→tavl balance == +1 ∗/ x→tavl balance = −1, y→tavl balance = 0;
w→tavl balance = 0;

Section 8.5.2

1. We can just reuse the alternate implementation of case 4 for TBST deletion, following
it by setting up q and dir as the rebalancing step expects them to be.

§658 〈Case 4 in TAVL deletion, alternate version 658 〉 ≡
〈Case 4 in TBST deletion, alternate version; tbst ⇒ tavl 656 〉
q = r ;
dir = 0;

Section 8.5.6

1. Our argument here is similar to that in Exercise 7.7-4. Consider the links that are
traversed to successfully find the parent of each node, besides the root, in the tree shown
below. Do not include links followed on the side that does not lead to the node’s parent.
Because there are never more of these than on the successful side, they add only a constant
time to the algorithm and can be ignored.

0

1

2

3

4

5

6

7

The table below lists the links followed. The important point is that no link is listed twice.
Node Links Followed to Node’s

Parent

0 0→2, 2→3

1 1→2

2 2→1, 1→0

3 3→5, 5→6

386 GNU libavl 2.0.1

4 4→5

5 5→4, 4→3

6 (root)

7 7→6

This generalizes to all TBSTs. Because a TBST with n nodes contains only 2n links,
this means we have an upper bound on finding the parent of every node in a TBST of at
most 2n successful link traversals plus 2n unsuccessful link traversals. Averaging 4n over n
nodes, we get an upper bound of 4n/n ≡ 4 link traversals, on average, to find the parent
of a given node.

This upper bound applies only to the average case, not to the case of any individual node.
In particular, it does not say that the usage of the algorithm in tavl delete() will exhibit
average behavior. In practice, however, the performance of this algorithm in tavl delete()
seems quite acceptable. See Exercise 3 for an alternative with more certain behavior.

2. Instead of storing a null pointer in the left thread of the least node and the right thread of
the greatest node, store a pointer to a node “above the root”. To make this work properly,
tavl root will have to become an actual node, not just a node pointer, because otherwise
trying to find its right child would invoke undefined behavior. Also, both of tavl root ’s
children would have to be the root node.

This is probably not worth it. On the surface it seems like a good idea but ugliness lurks
beneath.

3. The necessary changes are pervasive, so the complete code for the modified function is
presented below. The search step is borrowed from TRB deletion, presented in the next
chapter.

§659 〈TAVL item deletion function, with stack 659 〉 ≡
void ∗tavl delete (struct tavl table ∗tree, const void ∗item) {

/∗ Stack of nodes. ∗/
struct tavl node ∗pa[TAVL_MAX_HEIGHT]; /∗ Nodes. ∗/
unsigned char da[TAVL_MAX_HEIGHT]; /∗ tavl link [] indexes. ∗/
int k = 0; /∗ Stack pointer. ∗/
struct tavl node ∗p; /∗ Traverses tree to find node to delete. ∗/
int cmp; /∗ Result of comparison between item and p. ∗/
int dir ; /∗ Child of p to visit next. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search TRB tree for item to delete; trb ⇒ tavl 350 〉
〈Step 2: Delete item from TAVL tree, with stack 660 〉
〈Steps 3 and 4: Update balance factors and rebalance after TAVL deletion, with stack 665 〉
return (void ∗) item;

}
§660 〈Step 2: Delete item from TAVL tree, with stack 660 〉 ≡

if (p→tavl tag [1] == TAVL_THREAD) {
if (p→tavl tag [0] == TAVL_CHILD)

{ 〈Case 1 in TAVL deletion, with stack 661 〉 }

Appendix D: Answers to All the Exercises 387

else { 〈Case 2 in TAVL deletion, with stack 662 〉 }
} else {

struct tavl node ∗r = p→tavl link [1];
if (r→tavl tag [0] == TAVL_THREAD)

{ 〈Case 3 in TAVL deletion, with stack 663 〉 }
else { 〈Case 4 in TAVL deletion, with stack 664 〉 }

}
tree→tavl count−−;
tree→tavl alloc→libavl free (tree→tavl alloc, p);
This code is included in §659.

§661 〈Case 1 in TAVL deletion, with stack 661 〉 ≡
struct tavl node ∗r = p→tavl link [0];
while (r→tavl tag [1] == TAVL_CHILD)

r = r→tavl link [1];
r→tavl link [1] = p→tavl link [1];
pa[k − 1]→tavl link [da[k − 1]] = p→tavl link [0];
This code is included in §660.

§662 〈Case 2 in TAVL deletion, with stack 662 〉 ≡
pa[k − 1]→tavl link [da[k − 1]] = p→tavl link [da[k − 1]];
if (pa[k − 1] != (struct tavl node ∗) &tree→tavl root)

pa[k − 1]→tavl tag [da[k − 1]] = TAVL_THREAD;
This code is included in §660.

§663 〈Case 3 in TAVL deletion, with stack 663 〉 ≡
r→tavl link [0] = p→tavl link [0];
r→tavl tag [0] = p→tavl tag [0];
r→tavl balance = p→tavl balance;
if (r→tavl tag [0] == TAVL_CHILD) {

struct tavl node ∗x = r→tavl link [0];
while (x→tavl tag [1] == TAVL_CHILD)

x = x→tavl link [1];
x→tavl link [1] = r ;

}
pa[k − 1]→tavl link [da[k − 1]] = r ;
da[k] = 1;
pa[k++] = r ;
This code is included in §660.

§664 〈Case 4 in TAVL deletion, with stack 664 〉 ≡
struct tavl node ∗s;
int j = k++;
for (;;) {

da[k] = 0;
pa[k++] = r ;
s = r→tavl link [0];
if (s→tavl tag [0] == TAVL_THREAD)

break;

388 GNU libavl 2.0.1

r = s;
}
da[j] = 1;
pa[j] = pa[j − 1]→tavl link [da[j − 1]] = s;
if (s→tavl tag [1] == TAVL_CHILD)

r→tavl link [0] = s→tavl link [1];
else {

r→tavl link [0] = s;
r→tavl tag [0] = TAVL_THREAD;

}
s→tavl balance = p→tavl balance;
s→tavl link [0] = p→tavl link [0];
if (p→tavl tag [0] == TAVL_CHILD) {

struct tavl node ∗x = p→tavl link [0];
while (x→tavl tag [1] == TAVL_CHILD)

x = x→tavl link [1];
x→tavl link [1] = s;
s→tavl tag [0] = TAVL_CHILD;

}
s→tavl link [1] = p→tavl link [1];
s→tavl tag [1] = TAVL_CHILD;

This code is included in §660.

§665 〈Steps 3 and 4: Update balance factors and rebalance after TAVL deletion, with stack 665 〉 ≡
assert (k > 0);
while (−−k > 0) {

struct tavl node ∗y = pa[k];
if (da[k] == 0) {

y→tavl balance++;
if (y→tavl balance == +1) break;
else if (y→tavl balance == +2) {

〈Step 4: Rebalance after TAVL deletion, with stack 666 〉
}

} else {
〈Steps 3 and 4: Symmetric case in TAVL deletion, with stack 667 〉

}
}
This code is included in §659.

§666 〈Step 4: Rebalance after TAVL deletion, with stack 666 〉 ≡
struct tavl node ∗x = y→tavl link [1];
assert (x != NULL);
if (x→tavl balance == −1) {

struct tavl node ∗w ;
〈Rebalance for − balance factor in TAVL insertion in right subtree 310 〉
pa[k − 1]→tavl link [da[k − 1]] = w ;

Appendix D: Answers to All the Exercises 389

}
else if (x→tavl balance == 0) {

y→tavl link [1] = x→tavl link [0];
x→tavl link [0] = y ;
x→tavl balance = −1;
y→tavl balance = +1;
pa[k − 1]→tavl link [da[k − 1]] = x ;
break;

}
else /∗ x→tavl balance == +1 ∗/ {

if (x→tavl tag [0] == TAVL_CHILD)
y→tavl link [1] = x→tavl link [0];

else {
y→tavl tag [1] = TAVL_THREAD;
x→tavl tag [0] = TAVL_CHILD;

}
x→tavl link [0] = y ;
x→tavl balance = y→tavl balance = 0;
pa[k − 1]→tavl link [da[k − 1]] = x ;

}
This code is included in §665.

§667 〈Steps 3 and 4: Symmetric case in TAVL deletion, with stack 667 〉 ≡
y→tavl balance−−;
if (y→tavl balance == −1) break;
else if (y→tavl balance == −2) {

struct tavl node ∗x = y→tavl link [0];
assert (x != NULL);
if (x→tavl balance == +1) {

struct tavl node ∗w ;

〈Rebalance for + balance factor in TAVL insertion in left subtree 307 〉
pa[k − 1]→tavl link [da[k − 1]] = w ;

}
else if (x→tavl balance == 0) {

y→tavl link [0] = x→tavl link [1];
x→tavl link [1] = y ;
x→tavl balance = +1;
y→tavl balance = −1;
pa[k − 1]→tavl link [da[k − 1]] = x ;
break;

}
else /∗ x→tavl balance == −1 ∗/ {

if (x→tavl tag [1] == TAVL_CHILD)
y→tavl link [0] = x→tavl link [1];

else {
y→tavl tag [0] = TAVL_THREAD;
x→tavl tag [1] = TAVL_CHILD;

390 GNU libavl 2.0.1

}
x→tavl link [1] = y ;
x→tavl balance = y→tavl balance = 0;
pa[k − 1]→tavl link [da[k − 1]] = x ;

}
}
This code is included in §665.

Chapter 9

Section 9.3.3

1. For a brief explanation of an algorithm similar to the one here, see Section 15.3 [Inserting
into a PRB Tree], page 308.

§668 〈TRB item insertion function, without stack 668 〉 ≡
〈Find parent of a TBST node; tbst ⇒ trb 327 〉
void ∗∗trb probe (struct trb table ∗tree, void ∗item) {

struct trb node ∗p; /∗ Traverses tree looking for insertion point. ∗/
struct trb node ∗n; /∗ Newly inserted node. ∗/
int dir ; /∗ Side of p on which n is inserted. ∗/
assert (tree != NULL && item != NULL);
〈Step 1: Search TBST for insertion point; tbst ⇒ trb 255 〉
〈Step 2: Insert TRB node 339 〉
p = n;
for (;;) {

struct trb node ∗f , ∗g ;
f = find parent (tree, p);
if (f == (struct trb node ∗) &tree→trb root || f→trb color == TRB_BLACK)

break;
g = find parent (tree, f);
if (g == (struct trb node ∗) &tree→trb root)

break;
if (g→trb link [0] == f) {

struct trb node ∗y = g→trb link [1];
if (g→trb tag [1] == TRB_CHILD && y→trb color == TRB_RED) {

f→trb color = y→trb color = TRB_BLACK;
g→trb color = TRB_RED;
p = g ;

} else {
struct trb node ∗c, ∗x ;
if (f→trb link [0] == p)

y = f ;
else {

x = f ;

Appendix D: Answers to All the Exercises 391

y = x→trb link [1];
x→trb link [1] = y→trb link [0];
y→trb link [0] = x ;
g→trb link [0] = y ;

if (y→trb tag [0] == TRB_THREAD) {
y→trb tag [0] = TRB_CHILD;
x→trb tag [1] = TRB_THREAD;
x→trb link [1] = y ;

}
}
c = find parent (tree, g);
c→trb link [c→trb link [0] != g] = y ;

x = g ;
x→trb color = TRB_RED;
y→trb color = TRB_BLACK;

x→trb link [0] = y→trb link [1];
y→trb link [1] = x ;

if (y→trb tag [1] == TRB_THREAD) {
y→trb tag [1] = TRB_CHILD;
x→trb tag [0] = TRB_THREAD;
x→trb link [0] = y ;

}
break;

}
} else {

struct trb node ∗y = g→trb link [0];
if (g→trb tag [0] == TRB_CHILD && y→trb color == TRB_RED) {

f→trb color = y→trb color = TRB_BLACK;
g→trb color = TRB_RED;
p = g ;

} else {
struct trb node ∗c, ∗x ;

if (f→trb link [1] == p)
y = f ;

else {
x = f ;
y = x→trb link [0];
x→trb link [0] = y→trb link [1];
y→trb link [1] = x ;
g→trb link [1] = y ;

if (y→trb tag [1] == TRB_THREAD) {
y→trb tag [1] = TRB_CHILD;
x→trb tag [0] = TRB_THREAD;
x→trb link [0] = y ;

}

392 GNU libavl 2.0.1

}
c = find parent (tree, g);
c→trb link [c→trb link [0] != g] = y ;
x = g ;
x→trb color = TRB_RED;
y→trb color = TRB_BLACK;
x→trb link [1] = y→trb link [0];
y→trb link [0] = x ;
if (y→trb tag [0] == TRB_THREAD) {

y→trb tag [0] = TRB_CHILD;
x→trb tag [1] = TRB_THREAD;
x→trb link [1] = y ;

}
break;

}
}

}
tree→trb root→trb color = TRB_BLACK;
return &n→trb data;

}

Section 9.4.2

1.

§669 〈Case 4 in TRB deletion, alternate version 669 〉 ≡
struct trb node ∗s;
da[k] = 1;
pa[k++] = p;
for (;;) {

da[k] = 0;
pa[k++] = r ;
s = r→trb link [0];
if (s→trb tag [0] == TRB_THREAD)

break;
r = s;

}
p→trb data = s→trb data;
if (s→trb tag [1] == TRB_THREAD) {

r→trb tag [0] = TRB_THREAD;
r→trb link [0] = p;

} else {
struct trb node ∗t = r→trb link [0] = s→trb link [1];
while (t→trb tag [0] == TRB_CHILD)

t = t→trb link [0];
t→trb link [0] = p;

Appendix D: Answers to All the Exercises 393

}
p = s;

Section 9.4.5

1. The code used in the rebalancing loop is related to 〈Step 3: Rebalance tree after PRB
deletion 571 〉. Variable x is initialized by step 2 here, though, because otherwise the pseudo-
root node would be required to have a trb tag [] member.

§670 〈TRB item deletion function, without stack 670 〉 ≡
〈Find parent of a TBST node; tbst ⇒ trb 327 〉
void ∗trb delete (struct trb table ∗tree, const void ∗item) {

struct trb node ∗p; /∗ Node to delete. ∗/
struct trb node ∗q ; /∗ Parent of p. ∗/
struct trb node ∗x ; /∗ Node we might want to recolor red (maybe NULL). ∗/
struct trb node ∗f ; /∗ Parent of x . ∗/
struct trb node ∗g ; /∗ Parent of f . ∗/
int dir , cmp;
assert (tree != NULL && item != NULL);
〈Step 1: Search TAVL tree for item to delete; tavl ⇒ trb 312 〉
if (p→trb tag [1] == TRB_THREAD) {

if (p→trb tag [0] == TRB_CHILD) {
struct trb node ∗t = p→trb link [0];
while (t→trb tag [1] == TRB_CHILD)

t = t→trb link [1];
t→trb link [1] = p→trb link [1];
x = q→trb link [dir] = p→trb link [0];

} else {
q→trb link [dir] = p→trb link [dir];
if (q != (struct trb node ∗) &tree→trb root)

q→trb tag [dir] = TRB_THREAD;
x = NULL;

}
f = q ;

} else {
enum trb color t ;
struct trb node ∗r = p→trb link [1];
if (r→trb tag [0] == TRB_THREAD) {

r→trb link [0] = p→trb link [0];
r→trb tag [0] = p→trb tag [0];
if (r→trb tag [0] == TRB_CHILD) {

struct trb node ∗t = r→trb link [0];
while (t→trb tag [1] == TRB_CHILD)

t = t→trb link [1];
t→trb link [1] = r ;

}

394 GNU libavl 2.0.1

q→trb link [dir] = r ;
x = r→trb tag [1] == TRB_CHILD ? r→trb link [1] : NULL;
t = r→trb color ;
r→trb color = p→trb color ;
p→trb color = t ;
f = r ;
dir = 1;

} else {
struct trb node ∗s;
for (;;) {

s = r→trb link [0];
if (s→trb tag [0] == TRB_THREAD)

break;
r = s;

}
if (s→trb tag [1] == TRB_CHILD)

x = r→trb link [0] = s→trb link [1];
else {

r→trb link [0] = s;
r→trb tag [0] = TRB_THREAD;
x = NULL;

}
s→trb link [0] = p→trb link [0];
if (p→trb tag [0] == TRB_CHILD) {

struct trb node ∗t = p→trb link [0];
while (t→trb tag [1] == TRB_CHILD)

t = t→trb link [1];
t→trb link [1] = s;
s→trb tag [0] = TRB_CHILD;

}
s→trb link [1] = p→trb link [1];
s→trb tag [1] = TRB_CHILD;
t = s→trb color ;
s→trb color = p→trb color ;
p→trb color = t ;
q→trb link [dir] = s;
f = r ;
dir = 0;

}
}
if (p→trb color == TRB_BLACK) {

for (;;)
{
if (x != NULL && x→trb color == TRB_RED) {

x→trb color = TRB_BLACK;

Appendix D: Answers to All the Exercises 395

break;
}
if (f == (struct trb node ∗) &tree→trb root)

break;
g = find parent (tree, f);
if (dir == 0) {

struct trb node ∗w = f→trb link [1];
if (w→trb color == TRB_RED) {

w→trb color = TRB_BLACK;
f→trb color = TRB_RED;
f→trb link [1] = w→trb link [0];
w→trb link [0] = f ;
g→trb link [g→trb link [0] != f] = w ;
g = w ;
w = f→trb link [1];

}
if ((w→trb tag [0] == TRB_THREAD

|| w→trb link [0]→trb color == TRB_BLACK)
&& (w→trb tag [1] == TRB_THREAD

|| w→trb link [1]→trb color == TRB_BLACK)) w→trb color = TRB_RED;
else {

if (w→trb tag [1] == TRB_THREAD
|| w→trb link [1]→trb color == TRB_BLACK) {

struct trb node ∗y = w→trb link [0];
y→trb color = TRB_BLACK;
w→trb color = TRB_RED;
w→trb link [0] = y→trb link [1];
y→trb link [1] = w ;
w = f→trb link [1] = y ;
if (w→trb tag [1] == TRB_THREAD) {

w→trb tag [1] = TRB_CHILD;
w→trb link [1]→trb tag [0] = TRB_THREAD;
w→trb link [1]→trb link [0] = w ;

}
}
w→trb color = f→trb color ;
f→trb color = TRB_BLACK;
w→trb link [1]→trb color = TRB_BLACK;
f→trb link [1] = w→trb link [0];
w→trb link [0] = f ;
g→trb link [g→trb link [0] != f] = w ;
if (w→trb tag [0] == TRB_THREAD) {

w→trb tag [0] = TRB_CHILD;
f→trb tag [1] = TRB_THREAD;
f→trb link [1] = w ;

396 GNU libavl 2.0.1

}
break;

}
} else {

struct trb node ∗w = f→trb link [0];
if (w→trb color == TRB_RED) {

w→trb color = TRB_BLACK;
f→trb color = TRB_RED;
f→trb link [0] = w→trb link [1];
w→trb link [1] = f ;
g→trb link [g→trb link [0] != f] = w ;
g = w ;
w = f→trb link [0];

}
if ((w→trb tag [0] == TRB_THREAD

|| w→trb link [0]→trb color == TRB_BLACK)
&& (w→trb tag [1] == TRB_THREAD

|| w→trb link [1]→trb color == TRB_BLACK)) w→trb color = TRB_RED;
else {

if (w→trb tag [0] == TRB_THREAD
|| w→trb link [0]→trb color == TRB_BLACK) {

struct trb node ∗y = w→trb link [1];
y→trb color = TRB_BLACK;
w→trb color = TRB_RED;
w→trb link [1] = y→trb link [0];
y→trb link [0] = w ;
w = f→trb link [0] = y ;
if (w→trb tag [0] == TRB_THREAD) {

w→trb tag [0] = TRB_CHILD;
w→trb link [0]→trb tag [1] = TRB_THREAD;
w→trb link [0]→trb link [1] = w ;

}
}
w→trb color = f→trb color ;
f→trb color = TRB_BLACK;
w→trb link [0]→trb color = TRB_BLACK;
f→trb link [0] = w→trb link [1];
w→trb link [1] = f ;
g→trb link [g→trb link [0] != f] = w ;
if (w→trb tag [1] == TRB_THREAD) {

w→trb tag [1] = TRB_CHILD;
f→trb tag [0] = TRB_THREAD;
f→trb link [0] = w ;

}
break;

Appendix D: Answers to All the Exercises 397

}
}
x = f ;
f = find parent (tree, x);
if (f == (struct trb node ∗) &tree→trb root)

break;
dir = f→trb link [0] != x ;

}
}
tree→trb alloc→libavl free (tree→trb alloc, p);
tree→trb count−−;
return (void ∗) item;

}

Chapter 10

1. If we already have right-threaded trees, then we can get the benefits of a left-threaded
tree just by reversing the sense of the comparison function, so there is no additional benefit
to left-threaded trees.

Section 10.5.1

1.

§671 〈Case 4 in right-looking RTBST deletion, alternate version 671 〉 ≡
struct rtbst node ∗s = r→rtbst link [0];
while (s→rtbst link [0] != NULL) {

r = s;
s = r→rtbst link [0];

}
p→rtbst data = s→rtbst data;
if (s→rtbst rtag == RTBST_THREAD)

r→rtbst link [0] = NULL;
else r→rtbst link [0] = s→rtbst link [1];
p = s;

Section 10.5.2

1. This alternate version is not really an improvement: it runs up against the same problem
as right-looking deletion, so it sometimes needs to search for a predecessor.

§672 〈Case 4 in left-looking RTBST deletion, alternate version 672 〉 ≡
struct rtbst node ∗s = r→rtbst link [1];
while (s→rtbst rtag == RTBST_CHILD) {

r = s;
s = r→rtbst link [1];

}

398 GNU libavl 2.0.1

p→rtbst data = s→rtbst data;
if (s→rtbst link [0] != NULL) {

struct rtbst node ∗t = s→rtbst link [0];
while (t→rtbst rtag == RTBST_CHILD)

t = t→rtbst link [1];
t→rtbst link [1] = p;
r→rtbst link [1] = s→rtbst link [0];

} else {
r→rtbst link [1] = p;
r→rtbst rtag = RTBST_THREAD;

}
p = s;

Chapter 11

Section 11.3

1.

/∗ Rotates right at ∗yp. ∗/
static void rotate right (struct rtbst node ∗∗yp) {

struct rtbst node ∗y = ∗yp;
struct rtbst node ∗x = y→rtbst link [0];
if (x→rtbst rtag [1] == RTBST_THREAD) {

x→rtbst rtag = RTBST_CHILD;
y→rtbst link [0] = NULL;

}
else y→rtbst link [0] = x→rtbst link [1];
x→rtbst link [1] = y ;
∗yp = x ;

}
/∗ Rotates left at ∗xp. ∗/
static void rotate left (struct rtbst node ∗∗xp) {

struct rtbst node ∗x = ∗xp;
struct rtbst node ∗y = x→rtbst link [1];
if (y→rtbst link [0] == NULL) {

x→rtbst rtag = RTBST_THREAD;
x→rtbst link [1] = y ;

}
else x→rtbst link [1] = y→rtbst link [0];
y→rtbst link [0] = x ;
∗xp = y ;

}

Section 11.5.4

Appendix D: Answers to All the Exercises 399

1. There is no general efficient algorithm to find the parent of a node in an RTAVL tree.
The lack of left threads means that half the time we must do a full search from the top of
the tree. This would increase the execution time for deletion unacceptably.

2.

§673 〈Step 2: Delete RTAVL node, right-looking 673 〉 ≡
if (p→rtavl rtag == RTAVL_THREAD) {

if (p→rtavl link [0] != NULL)
{ 〈Case 1 in RTAVL deletion, right-looking 674 〉 }

else { 〈Case 2 in RTAVL deletion, right-looking 675 〉 }
} else {

struct rtavl node ∗r = p→rtavl link [1];
if (r→rtavl link [0] == NULL)

{ 〈Case 3 in RTAVL deletion, right-looking 676 〉 }
else { 〈Case 4 in RTAVL deletion, right-looking 677 〉 }

}
tree→rtavl alloc→libavl free (tree→rtavl alloc, p);

§674 〈Case 1 in RTAVL deletion, right-looking 674 〉 ≡
struct rtavl node ∗t = p→rtavl link [0];
while (t→rtavl rtag == RTAVL_CHILD)

t = t→rtavl link [1];
t→rtavl link [1] = p→rtavl link [1];
pa[k − 1]→rtavl link [da[k − 1]] = p→rtavl link [0];

This code is included in §673.

§675 〈Case 2 in RTAVL deletion, right-looking 675 〉 ≡
pa[k − 1]→rtavl link [da[k − 1]] = p→rtavl link [da[k − 1]];
if (da[k − 1] == 1)

pa[k − 1]→rtavl rtag = RTAVL_THREAD;

This code is included in §673.

§676 〈Case 3 in RTAVL deletion, right-looking 676 〉 ≡
r→rtavl link [0] = p→rtavl link [0];
if (r→rtavl link [0] != NULL) {

struct rtavl node ∗t = r→rtavl link [0];
while (t→rtavl rtag == RTAVL_CHILD)

t = t→rtavl link [1];
t→rtavl link [1] = r ;

}
pa[k − 1]→rtavl link [da[k − 1]] = r ;
r→rtavl balance = p→rtavl balance;
da[k] = 1;
pa[k++] = r ;

This code is included in §673.

§677 〈Case 4 in RTAVL deletion, right-looking 677 〉 ≡
struct rtavl node ∗s;
int j = k++;

400 GNU libavl 2.0.1

for (;;) {
da[k] = 0;
pa[k++] = r ;
s = r→rtavl link [0];
if (s→rtavl link [0] == NULL)

break;
r = s;

}
da[j] = 1;
pa[j] = pa[j − 1]→rtavl link [da[j − 1]] = s;
if (s→rtavl rtag == RTAVL_CHILD)

r→rtavl link [0] = s→rtavl link [1];
else r→rtavl link [0] = NULL;
if (p→rtavl link [0] != NULL) {

struct rtavl node ∗t = p→rtavl link [0];
while (t→rtavl rtag == RTAVL_CHILD)

t = t→rtavl link [1];
t→rtavl link [1] = s;

}
s→rtavl link [0] = p→rtavl link [0];
s→rtavl link [1] = p→rtavl link [1];
s→rtavl rtag = RTAVL_CHILD;
s→rtavl balance = p→rtavl balance;

This code is included in §673.

3.

§678 〈Case 4 in RTAVL deletion, alternate version 678 〉 ≡
struct rtavl node ∗s;
da[k] = 0;
pa[k++] = p;
for (;;) {

da[k] = 1;
pa[k++] = r ;
s = r→rtavl link [1];
if (s→rtavl rtag == RTAVL_THREAD)

break;
r = s;

}
if (s→rtavl link [0] != NULL) {

struct rtavl node ∗t = s→rtavl link [0];
while (t→rtavl rtag == RTAVL_CHILD)

t = t→rtavl link [1];
t→rtavl link [1] = p;

}
p→rtavl data = s→rtavl data;

Appendix D: Answers to All the Exercises 401

if (s→rtavl link [0] != NULL)
r→rtavl link [1] = s→rtavl link [0];

else {
r→rtavl rtag = RTAVL_THREAD;
r→rtavl link [1] = p;

}
p = s;

Chapter 13

Section 13.4

1. No. It would work, except for the important special case where q is the pseudo-root but
p→pbst parent is NULL.

Section 13.7

1.

§679 〈PBST balance function, with integrated parent updates 679 〉 ≡
〈BST to vine function; bst ⇒ pbst 89 〉
〈Vine to balanced PBST function, with parent updates 680 〉
void pbst balance (struct pbst table ∗tree) {

assert (tree != NULL);
tree to vine (tree);
vine to tree (tree);

}
§680 〈Vine to balanced PBST function, with parent updates 680 〉 ≡

〈PBST compression function 682 〉
static void vine to tree (struct pbst table ∗tree) {

unsigned long vine; /∗ Number of nodes in main vine. ∗/
unsigned long leaves; /∗ Nodes in incomplete bottom level, if any. ∗/
int height ; /∗ Height of produced balanced tree. ∗/
struct pbst node ∗p, ∗q ; /∗ Current visited node and its parent. ∗/
〈Calculate leaves; bst ⇒ pbst 91 〉
〈Reduce vine general case to special case; bst ⇒ pbst 92 〉
〈Make special case vine into balanced tree and count height; bst ⇒ pbst 93 〉
〈Set parents of main vine 681 〉

}
This code is included in §679.

§681 〈Set parents of main vine 681 〉 ≡
for (q = NULL, p = tree→pbst root ; p != NULL; q = p, p = p→pbst link [0])

p→pbst parent = q ;
This code is included in §680.

§682 〈PBST compression function 682 〉 ≡

402 GNU libavl 2.0.1

static void compress (struct pbst node ∗root , unsigned long count) {
assert (root != NULL);
while (count−−) {

struct pbst node ∗red = root→pbst link [0];
struct pbst node ∗black = red→pbst link [0];
root→pbst link [0] = black ;
red→pbst link [0] = black→pbst link [1];
black→pbst link [1] = red ;
red→pbst parent = black ;
if (red→pbst link [0] != NULL)

red→pbst link [0]→pbst parent = red ;
root = black ;

}
}
This code is included in §680.

Chapter 14

Section 14.2

1.

/∗ Rotates right at ∗yp. ∗/
static void rotate right (struct pbst node ∗∗yp) {

struct pbst node ∗y = ∗yp;
struct pbst node ∗x = y→pbst link [0];
y→pbst link [0] = x→pbst link [1];
x→pbst link [1] = y ;
∗yp = x ;
x→pbst parent = y→pbst parent ;
y→pbst parent = x ;
if (y→pbst link [0] != NULL)

y→pbst link [0]→pbst parent = y ;
}
/∗ Rotates left at ∗xp. ∗/
static void rotate left (struct pbst node ∗∗xp) {

struct pbst node ∗x = ∗xp;
struct pbst node ∗y = x→pbst link [1];
x→pbst link [1] = y→pbst link [0];
y→pbst link [0] = x ;
∗xp = y ;
y→pbst parent = x→pbst parent ;
x→pbst parent = y ;
if (x→pbst link [1] != NULL)

x→pbst link [1]→pbst parent = x ;
}

Appendix D: Answers to All the Exercises 403

Section 14.4.2

1. Yes. Both code segments update the nodes along the direct path from y down to n,
including node y but not node n. The plain AVL code excluded node n by updating nodes
as it moved down to them and making arrival at node n the loop’s termination condition.
The PAVL code excludes node n by starting at it but updating the parent of each visited
node instead of the node itself.

There still could be a problem at the edge case where no nodes’ balance factors were
to be updated, but there is no such case. There is always at least one balance factor to
update, because every inserted node has a parent whose balance factor is affected by its
insertion. The one exception would be the first node inserted into an empty tree, but that
was already handled as a special case.

2. Sure. There is no parallel to Exercise 5.4.4-4 because q is never the pseudo-root.

404 GNU libavl 2.0.1

Appendix E: Catalogue of Algorithms 405

Appendix E Catalogue of Algorithms

This appendix lists all of the algorithms described and implemented in this book, along
with page number references. Each algorithm is listed under the least-specific type of tree
to which it applies, which is not always the same as the place where it is introduced. For
instance, rotations on threaded trees can be used in any threaded tree, so they appear under
“Threaded Binary Search Tree Algorithms”, despite their formal introduction later within
the threaded AVL tree chapter.

Sometimes multiple algorithms for accomplishing the same task are listed. In this case,
the different algorithms are qualified by a few descriptive words. For the algorithm used in
Libavl, the description is enclosed by parentheses, and the description of each alternative
algorithm is set off by a comma.

Binary Search Tree Algorithms

Advancing a traverser . 58
Backing up a traverser . 60
Balancing . 71
Copying (iterative; robust) . 65
Copying, iterative . 63
Copying, recursive . 61
Copying, recursive; robust, version 1 . 362
Copying, recursive; robust, version 2 . 363
Copying, recursive; robust, version 3 . 363
Creation . 34
Deletion (iterative) . 40
Deletion, by merging . 43
Deletion, special case for no left child . 357
Deletion, with data modification . 357
Destruction (by rotation) . 68
Destruction, iterative . 69
Destruction, recursive . 68
Getting the current item in a traverser . 61
Initialization of traverser as copy . 58
Initialization of traverser to found item . 56
Initialization of traverser to greatest item 56
Initialization of traverser to inserted item 57
Initialization of traverser to least item . 55
Initialization of traverser to null item . 55
Insertion (iterative) . 36
Insertion, as root . 37
Insertion, as root, of existing node in arbitrary subtree 354
Insertion, as root, of existing node in arbitrary subtree, robustly 355
Insertion, using pointer to pointer . 353
Join, iterative . 365
Join, recursive . 80

406 GNU libavl 2.0.1

Refreshing of a traverser (general) . 53
Refreshing of a traverser, optimized . 361
Replacing the current item in a traverser . 61
Rotation, left . 352
Rotation, left double . 117
Rotation, right . 352
Rotation, right double . 118
Search . 35
Traversal (iterative; convenient, reliable) . 58
Traversal, iterative . 50
Traversal, iterative; convenient . 51
Traversal, iterative; convenient, reliable . 360
Traversal, iterative; with dynamic stack . 358
Traversal, level order . 353
Traversal, recursive . 46
Traversal, recursive; with nested function 358
Vine compression . 77
Vine from tree . 72
Vine to balanced tree . 75

AVL Tree Algorithms

Advancing a traverser . 131
Backing up a traverser . 132
Copying (iterative) . 133
Deletion (iterative) . 122
Deletion, with data modification . 377
Initialization of traverser to found item . 131
Initialization of traverser to greatest item 130
Initialization of traverser to inserted item 130
Initialization of traverser to least item . 130
Insertion (iterative) . 111
Insertion, recursive . 120
Insertion, with bitmask . 376

Red-Black Tree Algorithms

Deletion (iterative) . 151
Deletion, with data modification . 380
Insertion (iterative) . 142
Insertion, initial black . 147

Appendix E: Catalogue of Algorithms 407

Threaded Binary Search Tree Algorithms

Advancing a traverser . 176
Backing up a traverser . 177
Balancing . 182
Copying . 179
Copying a node . 178
Creation . 166
Deletion (parent tracking) . 168
Deletion, with data modification . 382
Deletion, with parent node algorithm . 381
Destruction . 181
Initialization of traverser as copy . 176
Initialization of traverser to found item . 175
Initialization of traverser to greatest item 175
Initialization of traverser to inserted item 176
Initialization of traverser to least item . 174
Initialization of traverser to null item . 174
Insertion . 167
Parent of a node . 203
Rotation, left . 384
Rotation, right . 384
Search . 166
Vine compression . 185
Vine from tree . 182
Vine to balanced tree . 184

Threaded AVL Tree Algorithms

Copying a node . 204
Deletion (without stack) . 197
Deletion, with data modification . 385
Deletion, with stack . 386
Insertion . 193
Rotation, left double, version 1 . 196
Rotation, left double, version 2 . 385
Rotation, right double . 196

Threaded Red-Black Tree Algorithms

Deletion (with stack) . 214
Deletion, with data modification . 392
Deletion, without stack . 393
Insertion (with stack) . 210

408 GNU libavl 2.0.1

Insertion, without stack . 390

Right-Threaded Binary Search Tree Algorithms

Advancing a traverser . 238
Backing up a traverser . 238
Balancing . 243
Copying . 242
Copying a node . 241
Deletion (left-looking) . 233
Deletion, right-looking . 230
Deletion, with data modification, left-looking 397
Deletion, with data modification, right-looking 397
Destruction . 242
Initialization of traverser to found item . 237
Initialization of traverser to greatest item 237
Initialization of traverser to least item . 236
Insertion . 227
Rotation, left . 398
Rotation, right . 398
Search . 227
Vine compression . 243
Vine from tree . 243

Right-Threaded AVL Tree Algorithms

Copying . 259
Copying a node . 259
Deletion (left-looking) . 253
Deletion, right-looking . 399
Deletion, with data modification . 400
Insertion . 249

Right-Threaded Red-Black Tree Algorithms

Deletion . 269
Insertion . 264

Binary Search Tree with Parent Pointers Algorithms

Advancing a traverser . 285
Backing up a traverser . 286

Appendix E: Catalogue of Algorithms 409

Balancing (with later parent updates) . 289
Balancing, with integrated parent updates 401
Copying . 287
Deletion . 280
Initialization of traverser to found item . 284
Initialization of traverser to greatest item 283
Initialization of traverser to inserted item 284
Initialization of traverser to least item . 283
Insertion . 279
Rotation, left . 402
Rotation, right . 402
Update parent pointers . 290
Vine compression (with parent updates) . 401
Vine to balanced tree (without parent updates) 289
Vine to balanced tree, with parent updates 401

AVL Tree with Parent Pointers Algorithms

Copying . 302
Deletion . 298
Insertion . 294

Red-Black Tree with Parent Pointers Algorithms

Deletion . 312
Insertion . 308

410 GNU libavl 2.0.1

Appendix F: Index 411

Appendix F Index

A
aborting allocator . 337
array of search functions . 344
AVL copy function . 133
AVL functions . 109
AVL item deletion function 122
AVL item insertion function 111
AVL node structure . 109
AVL traversal functions . 129
AVL traverser advance function 131
AVL traverser back up function 132
AVL traverser greatest-item initializer 130
AVL traverser insertion initializer 130
AVL traverser least-item initializer 130
AVL traverser search initializer 131
AVL tree verify function . 137
avl-test.c . 135
avl.c . 108
avl.h . 107
avl copy function . 133
avl delete function . 122
AVL_H macro . 108
avl node structure . 109
avl probe function . 111
avl probe() local variables 111
avl t find function . 131
avl t first function . 130
avl t insert function . 130
avl t last function . 130
avl t next function . 131
avl t prev function . 132

B
bin-ary-test.c . 350
bin cmp function . 336
binary search of ordered array 24
binary search tree entry . 25
binary search using bsearch() 342
binary tree entry structure 25
block structure . 96
blp’s implementation of bsearch() 343
blp bsearch function . 343
BST balance function . 71
BST compression function . 77
BST copy error helper function 65
BST copy function . 65
BST creation function . 34
BST destruction function . 68
BST extra function prototypes 71
BST item deletion function 40
BST item deletion function, by merging 43
BST item insertion function 36

BST item insertion function, alternate version
. 353

BST item insertion function, root insertion version
. 37

BST join function, iterative version 365
BST join function, recursive version 80
BST maximum height . 32
BST node structure . 31
BST operations . 34
BST overflow test function 94
BST print function . 92
BST search function . 35
BST table structure . 32
BST test function . 83
BST to vine function . 72
BST traversal functions . 54
BST traverser advance function 58
BST traverser back up function 60
BST traverser check function 85
BST traverser copy initializer 58
BST traverser current item function 61
BST traverser greatest-item initializer 56
BST traverser insertion initializer 57
BST traverser least-item initializer 55
BST traverser null initializer 55
BST traverser refresher . 53
BST traverser refresher, with caching. 361
BST traverser replacement function 61
BST traverser search initializer 56
BST traverser structure . 53
BST verify function . 88
bst-test.c . 82
bst.c . 29
bst.h . 29
bst balance function . 71
bst copy function . 65
bst copy iterative function 63, 364
bst copy recursive 1 function 61
bst create function . 34
bst deallocate recursive function 363
bst delete function . 40, 43
bst destroy function . 68, 70
bst destroy recursive function 68
bst find function . 35, 337
BST_H macro . 29
BST_MAX_HEIGHT macro . 33
bst node structure . 31
bst probe function . 36, 37, 353
bst robust copy recursive 1 function 362
bst robust copy recursive 2 function 363
bst t copy function . 58
bst t cur function . 61
bst t find function . 56
bst t first function . 55

412 GNU libavl 2.0.1

bst t init function . 55
bst t insert function . 57
bst t last function . 56
bst t next function . 58
bst t prev function . 60
bst t replace function . 61
bst table structure . 32
bst traverse level order function 354
bst traverser structure . 53
BSTS functions . 373
BSTS structures . 372
BSTS test . 373
bsts.c . 374
bsts find function . 373
bsts insert function . 373
bsts node structure. 372
bsts tree structure . 372

C
calculate leaves . 76
case 1 in AVL deletion . 124
case 1 in BST deletion . 41
case 1 in left-looking RTBST deletion 233
case 1 in left-side initial-black RB insertion

rebalancing . 149
case 1 in left-side PRB deletion rebalancing . . . 316
case 1 in left-side PRB insertion rebalancing . . 310
case 1 in left-side RB deletion rebalancing 157
case 1 in left-side RB insertion rebalancing . . . 145
case 1 in left-side RTRB insertion rebalancing

. 267
case 1 in left-side TRB deletion rebalancing . . . 218
case 1 in left-side TRB insertion rebalancing . . 212
case 1 in PAVL deletion . 299
case 1 in PBST deletion . 281
case 1 in PRB deletion . 313
case 1 in RB deletion . 153
case 1 in right-looking RTBST deletion 231
case 1 in right-side initial-black RB insertion

rebalancing . 150
case 1 in right-side PRB deletion rebalancing . . 318
case 1 in right-side PRB insertion rebalancing

. 312
case 1 in right-side RB deletion rebalancing . . . 158
case 1 in right-side RB insertion rebalancing . . 147
case 1 in right-side RTRB insertion rebalancing

. 267
case 1 in right-side TRB deletion rebalancing . . 220
case 1 in right-side TRB insertion rebalancing

. 214
case 1 in RTAVL deletion 255
case 1 in RTAVL deletion, right-looking 399
case 1 in RTRB deletion . 270
case 1 in TAVL deletion . 198
case 1 in TAVL deletion, with stack 387
case 1 in TBST deletion . 170
case 1 in TRB deletion . 216

case 1.5 in BST deletion . 357
case 2 in AVL deletion . 124
case 2 in BST deletion . 41
case 2 in left-looking RTBST deletion 233
case 2 in left-side initial-black RB insertion

rebalancing . 149
case 2 in left-side PRB deletion rebalancing . . . 316
case 2 in left-side PRB insertion rebalancing . . 310
case 2 in left-side RB deletion rebalancing 157
case 2 in left-side RB insertion rebalancing . . . 145
case 2 in left-side RTRB deletion rebalancing . . 272
case 2 in left-side RTRB insertion rebalancing

. 267
case 2 in left-side TRB deletion rebalancing . . . 219
case 2 in left-side TRB insertion rebalancing . . 213
case 2 in PAVL deletion . 299
case 2 in PBST deletion . 281
case 2 in PRB deletion . 313
case 2 in RB deletion . 153
case 2 in right-looking RTBST deletion 231
case 2 in right-side initial-black RB insertion

rebalancing . 150
case 2 in right-side PRB deletion rebalancing . . 318
case 2 in right-side PRB insertion rebalancing

. 312
case 2 in right-side RB deletion rebalancing . . . 159
case 2 in right-side RB insertion rebalancing . . 147
case 2 in right-side RTRB deletion rebalancing

. 273
case 2 in right-side RTRB insertion rebalancing

. 268
case 2 in right-side TRB deletion rebalancing . . 220
case 2 in right-side TRB insertion rebalancing

. 214
case 2 in RTAVL deletion 255
case 2 in RTAVL deletion, right-looking 399
case 2 in RTRB deletion . 270
case 2 in TAVL deletion . 198
case 2 in TAVL deletion, with stack 387
case 2 in TBST deletion . 170
case 2 in TRB deletion . 216
case 3 in AVL deletion . 124
case 3 in AVL deletion, alternate version 377
case 3 in BST deletion . 42
case 3 in BST deletion, alternate version 357
case 3 in left-looking RTBST deletion 234
case 3 in left-side initial-black RB insertion

rebalancing . 149
case 3 in left-side PRB insertion rebalancing . . 311
case 3 in left-side RB insertion rebalancing . . . 146
case 3 in left-side RTRB insertion rebalancing

. 268
case 3 in left-side TRB insertion rebalancing . . 213
case 3 in PAVL deletion . 299
case 3 in PBST deletion . 282
case 3 in PRB deletion . 314
case 3 in RB deletion . 153
case 3 in right-looking RTBST deletion 231

Appendix F: Index 413

case 3 in right-side initial-black RB insertion
rebalancing . 150

case 3 in right-side PRB insertion rebalancing
. 312

case 3 in right-side RB insertion rebalancing . . 147
case 3 in right-side RTRB insertion rebalancing

. 268
case 3 in right-side TRB insertion rebalancing

. 214
case 3 in RTAVL deletion 255
case 3 in RTAVL deletion, right-looking 399
case 3 in RTRB deletion . 270
case 3 in TAVL deletion . 199
case 3 in TAVL deletion, with stack 387
case 3 in TBST deletion . 171
case 3 in TRB deletion . 216
case 4 in left-looking RTBST deletion 234, 235
case 4 in left-looking RTBST deletion, alternate

version . 397
case 4 in right-looking RTBST deletion 232
case 4 in right-looking RTBST deletion, alternate

version . 397
case 4 in RTAVL deletion 255, 256
case 4 in RTAVL deletion, alternate version . . . 400
case 4 in RTAVL deletion, right-looking 399
case 4 in RTRB deletion . 270
case 4 in TAVL deletion . 199
case 4 in TAVL deletion, alternate version 385
case 4 in TAVL deletion, with stack 387
case 4 in TBST deletion . 172
case 4 in TBST deletion, alternate version 382
case 4 in TRB deletion . 216
case 4 in TRB deletion, alternate version 392
cheat search function . 344
cheating search . 344
check AVL tree structure . 137
check BST structure . 88
check counted nodes . 88
check for tree height in range 77
check RB tree structure . 162
check root is black . 162
check that backward traversal works 90
check that forward traversal works 90
check that the tree contains all the elements it

should . 89
check that traversal from the null element works

. 91
check tree→bst count is correct 88
check traverser function . 85
clean up after search tests 348
command line parser . 326
compare two AVL trees for structure and content

. 135
compare two BSTs for structure and content . . . 86
compare two PAVL trees for structure and content

. 304
compare two PBSTs for structure and content

. 291

compare two PRB trees for structure and content
. 318

compare two RB trees for structure and content
. 159

compare two RTAVL trees for structure and
content . 260

compare two RTBSTs for structure and content
. 245

compare two RTRB trees for structure and content
. 274

compare two TAVL trees for structure and content
. 205

compare two TBSTs for structure and content
. 187

compare two TRB trees for structure and content
. 221

compare fixed strings function 336

compare ints function 10, 335, 336, 342

compare trees function 135, 159, 187, 205, 221,
245, 260, 274, 291, 304, 319

comparison function for ints 9

compress function . 185, 402

copy error recovery function 65, 180, 242, 288

copy node function 178, 204, 241, 259

D

default memory allocation functions 11

default memory allocator header 12

delete BST node . 41

delete BST node by merging 44

delete item from AVL tree 123

delete item from PAVL tree 299

delete item from PRB tree 313

delete item from RB tree . 152

delete item from RB tree, alternate version . . . 380,
381

delete item from TAVL tree 198

delete item from TAVL tree, with stack 386

delete item from TRB tree 215

delete PBST node . 281

delete RTAVL node . 254

delete RTAVL node, right-looking 399

delete RTBST node, left-looking 233

delete RTBST node, right-looking 230

delete RTRB node . 269

delete TBST node . 169

delete order enumeration . 93

destroy a BST iteratively . 69

destroy a BST recursively . 68

414 GNU libavl 2.0.1

E
ensure w is black in left-side PRB deletion

rebalancing . 315

ensure w is black in left-side RB deletion
rebalancing . 156

ensure w is black in left-side TRB deletion
rebalancing . 218

ensure w is black in right-side PRB deletion
rebalancing . 317

ensure w is black in right-side RB deletion
rebalancing . 158

ensure w is black in right-side TRB deletion
rebalancing . 220

error node variable . 363

F
fail function . 102

fallback join function . 365

find BST node to delete . 41

find BST node to delete by merging 44

find parent of a TBST node 203

find PBST node to delete 280

find predecessor of RTBST node with left child
. 239

find predecessor of RTBST node with no left child
. 239

find RTBST node to delete 229

find TBST node to delete 169

find TBST node to delete, with parent node
algorithm . 381

find parent function . 203

finish up after BST deletion by merging 45

finish up after deleting BST node 42

finish up after deleting PBST node 282

finish up after deleting RTBST node 230

finish up after deleting TBST node 173

finish up after PRB deletion 317

finish up after RB deletion 158

finish up after RTRB deletion 274

finish up after TRB deletion 220

finish up and return after AVL deletion 128

first item function . 52

found insertion point in recursive AVL insertion
. 120

G
gen balanced tree function 368

gen deletions function . 369

gen insertions function . 368

generate permutation for balanced tree 368

generate random permutation of integers 367

H
handle case where x has a right child 59
handle case where x has no right child 59
handle stack overflow during BST traversal . . . 360
handle long option function. 324
handle short option function 323

I
initialize search test array 347
initialize smaller and larger within binary search

tree . 350
insert AVL node . 112
insert n into arbitrary subtree 355
insert new BST node, root insertion version 38
insert new node into RTBST tree 228
insert PAVL node . 295
insert PBST node . 279
insert PRB node . 308
insert RB node . 143
insert RTAVL node . 250
insert RTRB node . 265
insert TAVL node. 194
insert TBST node . 168
insert TRB node . 211
insert order enumeration . 93
insertion and deletion order generation 368
intermediate step between bst copy recursive 2 ()

and bst copy iterative() 364
iter variable . 360
iterative copy of BST . 63, 64
iterative traversal of BST, take 1 48
iterative traversal of BST, take 2 48
iterative traversal of BST, take 3 48
iterative traversal of BST, take 4 49
iterative traversal of BST, take 5 50
iterative traversal of BST, take 6 51, 52
iterative traversal of BST, with dynamically

allocated stack . 358

L
left-side rebalancing after initial-black RB insertion

. 148
left-side rebalancing after PRB deletion 315
left-side rebalancing after PRB insertion 309
left-side rebalancing after RB deletion 155
left-side rebalancing after RB insertion 144
left-side rebalancing after RTRB deletion 271
left-side rebalancing after RTRB insertion 266
left-side rebalancing after TRB deletion 218
left-side rebalancing after TRB insertion 211
left-side rebalancing case 1 in AVL deletion . . . 127
left-side rebalancing case 1 in PAVL deletion . . 300
left-side rebalancing case 2 in AVL deletion . . . 128
left-side rebalancing case 2 in PAVL deletion . . 301
level-order traversal . 353
LIBAVL_ALLOCATOR macro . 11

Appendix F: Index 415

libavl allocator structure . 11
license . 6

M
main function 103, 341, 347, 350
main program to test binary search tree array()

. 350
make special case TBST vine into balanced tree

and count height 185, 186
make special case vine into balanced tree and

count height . 77
MAX_INPUT macro . 341
memory allocator . 11
memory tracker 96, 97, 98, 100
move BST node to root . 38
move down then up in recursive AVL insertion

. 121
mt allocate function . 99
mt allocator function . 98
mt allocator structure . 97
mt arg index enumeration . 97
mt create function . 97
mt free function . 100
mt policy enumeration . 96

N
new block function . 98

O
option parser . 323
option structure . 101
option get function . 325
option init function . 323
option state structure . 323
overflow testers . 95, 370

P
parse search test command line 347
parse command line function 327
PAVL copy function . 302
PAVL functions . 294
PAVL item deletion function 298
PAVL item insertion function 294
PAVL node structure . 293
PAVL traversal functions . 302
pavl-test.c . 304
pavl.c . 293
pavl.h . 293
pavl copy function . 302
pavl delete function . 298
PAVL_H macro . 293
pavl node structure . 293
pavl probe function . 294
PBST balance function . 289

PBST balance function, with integrated parent
updates . 401

PBST compression function 401

PBST copy error helper function 288

PBST copy function . 287

PBST extra function prototypes 289

PBST functions . 278

PBST item deletion function 280

PBST item insertion function 279

PBST node structure . 278

PBST traversal functions . 283

PBST traverser advance function 285

PBST traverser back up function 286

PBST traverser first initializer 283

PBST traverser insertion initializer 284

PBST traverser last initializer 283

PBST traverser search initializer 284

pbst-test.c . 290

pbst.c . 278

pbst.h . 277

pbst balance function 289, 401

pbst copy function . 287

pbst delete function . 280

PBST_H macro . 277

pbst node structure . 278

pbst probe function. 279

pbst t find function . 284

pbst t first function . 283

pbst t insert function. 284

pbst t last function . 284

pbst t next function . 285

pbst t prev function . 286

permuted integers function 368

pgm name variable . 105

pool allocator structure . 338

pool allocator free function 338

pool allocator malloc function 338

pool allocator tbl create function 338

PRB functions. 308

PRB item deletion function 312

PRB item insertion function 308

PRB node structure . 307

prb-test.c . 318

prb.c . 307

prb.h . 307

prb color enumeration . 307

prb delete function . 312

PRB_H macro . 307

prb node structure . 307

prb probe function . 308

print tree structure function 186, 244

print whole tree function 92, 187, 245

probe function . 120

process node function . 51

416 GNU libavl 2.0.1

R
random number seeding . 370
RB functions . 142
RB item deletion function 151
RB item insertion function 142
RB item insertion function, initial black 147
RB maximum height . 141
RB node structure . 141
RB tree verify function . 161
rb-test.c . 159
rb.c . 139
rb.h . 139
rb color enumeration . 141
rb delete function . 151
RB_H macro . 139
RB_MAX_HEIGHT macro . 141
rb node structure . 141
rb probe function . 142, 147
rb probe() local variables . 142
rebalance + balance in TAVL insertion in left

subtree, alternate version 385
rebalance after AVL deletion 127
rebalance after AVL insertion 115, 116
rebalance after initial-black RB insertion 148
rebalance after PAVL deletion 300
rebalance after PAVL insertion 296
rebalance after PRB insertion 309
rebalance after RB deletion 155
rebalance after RB insertion 144
rebalance after RTAVL deletion in left subtree

. 257
rebalance after RTAVL deletion in right subtree

. 257
rebalance after RTAVL insertion 250
rebalance after RTRB deletion 271
rebalance after RTRB insertion 266
rebalance after TAVL deletion 200
rebalance after TAVL deletion, with stack 388
rebalance after TAVL insertion 194
rebalance after TRB insertion 211
rebalance AVL tree after insertion in left subtree

. 116
rebalance AVL tree after insertion in right subtree

. 118
rebalance for + balance factor after left-side

RTAVL deletion . 258
rebalance for + balance factor after right-side

RTAVL deletion . 258
rebalance for + balance factor after TAVL deletion

in left subtree . 201
rebalance for + balance factor after TAVL deletion

in right subtree . 202
rebalance for + balance factor in PAVL insertion

in left subtree . 297
rebalance for + balance factor in PAVL insertion

in right subtree . 298
rebalance for + balance factor in RTAVL insertion

in left subtree . 252

rebalance for + balance factor in RTAVL insertion
in right subtree . 252

rebalance for + balance factor in TAVL insertion
in left subtree . 196

rebalance for + balance factor in TAVL insertion
in right subtree . 196

rebalance for − balance factor after left-side
RTAVL deletion . 257

rebalance for − balance factor after right-side
RTAVL deletion . 259

rebalance for − balance factor after TAVL deletion
in left subtree . 200

rebalance for − balance factor after TAVL deletion
in right subtree . 202

rebalance for − balance factor in PAVL insertion
in left subtree . 297

rebalance for − balance factor in PAVL insertion
in right subtree . 298

rebalance for − balance factor in RTAVL insertion
in left subtree . 251

rebalance for − balance factor in RTAVL insertion
in right subtree . 253

rebalance for − balance factor in TAVL insertion
in left subtree . 195

rebalance for − balance factor in TAVL insertion
in right subtree . 196

rebalance for 0 balance factor after left-side
RTAVL deletion . 258

rebalance for 0 balance factor after right-side
RTAVL deletion . 258

rebalance for 0 balance factor after TAVL deletion
in left subtree . 201

rebalance for 0 balance factor after TAVL deletion
in right subtree . 202

rebalance PAVL tree after insertion in left subtree
. 297

rebalance PAVL tree after insertion in right
subtree . 298

rebalance RTAVL tree after insertion to left . . . 251
rebalance RTAVL tree after insertion to right . . 251
rebalance TAVL tree after insertion in left subtree

. 194
rebalance TAVL tree after insertion in right

subtree . 196
rebalance tree after PRB deletion 314
rebalance tree after RB deletion 154
rebalance tree after TRB deletion 217
recurse verify tree function 89, 136, 160, 188,

206, 222, 246, 261, 275, 291, 305, 319
recursive copy of BST, take 1 61
recursive copy of BST, take 2 62
recursive deallocation function 362
recursive insertion into AVL tree 120, 121
recursive traversal of BST 46, 47
recursive traversal of BST, using nested function

. 358
recursively verify AVL tree structure 136
recursively verify BST structure 89

Appendix F: Index 417

recursively verify PAVL tree structure 305
recursively verify PBST structure 291
recursively verify PRB tree structure 319
recursively verify RB tree structure 160
recursively verify RTAVL tree structure 261
recursively verify RTBST structure 246
recursively verify RTRB tree structure 275
recursively verify TAVL tree structure 206
recursively verify TBST structure 188
recursively verify TRB tree structure 222
reduce TBST vine general case to special case

. 185
reduce vine general case to special case 76
reject request function . 99
right-side rebalancing after initial-black RB

insertion . 150
right-side rebalancing after PRB deletion 317
right-side rebalancing after PRB insertion 311
right-side rebalancing after RB deletion 158
right-side rebalancing after RB insertion 146
right-side rebalancing after RTRB deletion 272
right-side rebalancing after RTRB insertion . . . 266
right-side rebalancing after TRB deletion 220
right-side rebalancing after TRB insertion 213
right-side rebalancing case 1 in PAVL deletion

. 301
right-side rebalancing case 2 in PAVL deletion

. 301
robust recursive copy of BST, take 1 362
robust recursive copy of BST, take 2 363
robust recursive copy of BST, take 3 363
robust root insertion of existing node in arbitrary

subtree . 355
robustly move BST node to root 356
robustly search for insertion point in arbitrary

subtree . 355
root insertion of existing node in arbitrary subtree

. 354
root insert function . 354, 355
rotate left at x then right at y in AVL tree . . . 117
rotate left at y in AVL tree 118
rotate right at x then left at y in AVL tree . . . 118
rotate right at y in AVL tree 116
rotate left function 352, 384, 398, 402
rotate right function 352, 384, 398, 402
RTAVL copy function . 259
RTAVL functions . 248
RTAVL item deletion function 253
RTAVL item insertion function 249
RTAVL node copy function 259
RTAVL node structure . 247
rtavl-test.c . 260
rtavl.c . 247
rtavl.h . 247
rtavl delete function . 253
RTAVL_H macro . 247
rtavl node structure . 247
rtavl probe function . 249

rtavl tag enumeration . 247

RTBST balance function . 243

RTBST copy error helper function 241

RTBST copy function . 242

RTBST destruction function 242

RTBST functions . 226

RTBST item deletion function 229

RTBST item insertion function 227

RTBST main copy function 240

RTBST node copy function 241

RTBST node structure . 226

RTBST print function. 244

RTBST search function . 227

RTBST traversal functions 236

RTBST traverser advance function 238

RTBST traverser back up function 238

RTBST traverser first initializer 236

RTBST traverser last initializer 237

RTBST traverser search initializer 237

RTBST tree-to-vine function 243

RTBST vine compression function 243

rtbst-test.c . 244

rtbst.c . 226

rtbst.h . 225

rtbst copy function . 240

rtbst delete function . 229

rtbst destroy function . 242

rtbst find function . 227

RTBST_H macro . 225

rtbst node structure . 226

rtbst probe function . 227

rtbst t find function . 237

rtbst t first function . 236

rtbst t last function . 237

rtbst t next function . 238

rtbst t prev function . 238

rtbst tag enumeration . 226

RTRB functions . 264

RTRB item deletion function 269

RTRB item insertion function 264

RTRB node structure . 263

rtrb-test.c . 274

rtrb.c . 263

rtrb.h . 263

rtrb color enumeration . 263

rtrb delete function . 269

RTRB_H macro . 263

rtrb node structure . 263

rtrb probe function . 264

rtrb tag enumeration . 263

run search tests . 348

418 GNU libavl 2.0.1

S
s variable . 377, 392, 400
search AVL tree for insertion point 111
search AVL tree for item to delete 123
search BST for insertion point, root insertion

version . 38
search for insertion point in arbitrary subtree . . 354
search functions . 343
search of binary search tree stored as array 26
search PAVL tree for insertion point 295
search PBST tree for insertion point 279
search RB tree for insertion point 143
search RTAVL tree for insertion point 249
search RTAVL tree for item to delete 253
search RTBST for insertion point 228
search RTRB tree for insertion point 265
search TAVL tree for insertion point 193
search TAVL tree for item to delete 197
search TBST for insertion point. 167
search test functions . 345, 346
search test main program . 347
search TRB tree for insertion point 211
search TRB tree for item to delete 215
search func structure . 344
seq-test.c . 341
sequentially search a sorted array of ints 21
sequentially search a sorted array of ints using a

sentinel . 22
sequentially search a sorted array of ints using a

sentinel (2) . 22
sequentially search an array of ints 19
sequentially search an array of ints using a sentinel

. 20
set parents of main vine . 401
show ‘bin-ary-test’ usage message 351
srch-test.c . 343
start timer function . 345
stoi function . 326, 347
stop timer function . 345
string to integer function stoi() 347
summing string lengths with next item() 51
summing string lengths with walk() 51
symmetric case in PAVL deletion 301
symmetric case in TAVL deletion 202
symmetric case in TAVL deletion, with stack . . 389

T
table assertion function control directives 339
table assertion function prototypes 14
table assertion functions . 340
table count function prototype 13
table count macro . 338
table creation function prototypes 12
table function prototypes . 17
table function types . 9, 10
table insertion and deletion function prototypes

. 13

table insertion convenience functions 339
table types . 17
TAVL copy function . 205
TAVL functions . 193
TAVL item deletion function 197
TAVL item deletion function, with stack 386
TAVL item insertion function 193
TAVL node copy function 204
TAVL node structure . 191
tavl-test.c . 205
tavl.c . 191
tavl.h . 191
tavl delete function . 197, 386
TAVL_H macro . 191
tavl node structure . 191
tavl probe function . 193
tavl tag enumeration . 191
tbl allocator default variable 12
tbl assert delete function . 340
tbl assert delete macro . 339
tbl assert insert function . 340
tbl assert insert macro . 339
tbl comparison func type . 9
tbl copy func type . 10
tbl count macro . 338
tbl free function . 11
tbl insert function . 339
tbl item func type . 10
tbl malloc abort function . 337
tbl replace function . 339
TBST balance function . 182
TBST copy error helper function 180
TBST copy function . 179
TBST creation function . 166
TBST destruction function 181
TBST functions . 165
TBST item deletion function 168
TBST item insertion function 167
TBST main balance function 182
TBST main copy function 179
TBST node copy function 178
TBST node structure . 164
TBST print function . 186
TBST search function . 166
TBST table structure . 165
TBST test function . 189
TBST traversal functions . 174
TBST traverser advance function 176
TBST traverser back up function 177
TBST traverser copy initializer 176
TBST traverser first initializer 174
TBST traverser insertion initializer. 176
TBST traverser last initializer 175
TBST traverser null initializer 174
TBST traverser search initializer 175
TBST traverser structure . 173
TBST tree-to-vine function 182
TBST verify function . 188

Appendix F: Index 419

TBST vine compression function 185
TBST vine-to-tree function 184
tbst-test.c . 186
tbst.c . 163
tbst.h . 163
tbst balance function . 182
tbst copy function . 179
tbst create function . 166
tbst delete function . 168
tbst destroy function . 181
tbst find function . 166
TBST_H macro . 163
tbst link structure . 382
tbst node structure . 164, 382
tbst probe function . 167
tbst t copy function . 176
tbst t find function . 175
tbst t first function. 174
tbst t init function . 174
tbst t insert function . 176
tbst t last function . 175
tbst t next function . 176
tbst t prev function . 177
tbst table structure . 165, 382
tbst tag enumeration . 164
tbst traverser structure . 173
test BST traversal during modifications 84
test creating a BST and inserting into it 83
test declarations 93, 96, 101, 103, 105
test deleting from an empty tree 87
test deleting nodes from the BST and making

copies of it . 86
test destroying the tree . 87
test enumeration. 103
test main program . 103
test prototypes . 83, 95, 102
test TBST balancing . 189
test utility functions . 102
test.c . 82
test.h . 82
test bst copy function . 372
test bst t find function . 371
test bst t first function . 95
test bst t insert function . 371
test bst t last function . 370
test bst t next function . 371
test bst t prev function . 372
test correctness function 83, 189, 374
TEST_H macro . 82
test options enumeration . 103
test overflow function . 94, 374
time seed function . 370
time successful search function 346
time unsuccessful search function 346
timer functions . 345
total length function . 51
transform left-side PRB deletion rebalancing case 3

into case 2 . 316

transform left-side RB deletion rebalancing case 3
into case 2 . 157

transform left-side RTRB deletion rebalancing case
3 into case 2 . 273

transform left-side TRB deletion rebalancing case
3 into case 2 . 219

transform right-side PRB deletion rebalancing case
3 into case 2 . 318

transform right-side RB deletion rebalancing case 3
into case 2 . 159

transform right-side RTRB deletion rebalancing
case 3 into case 2 . 274

transform right-side TRB deletion rebalancing case
3 into case 2 . 220

trav refresh function . 54, 361
traverse iterative function 48, 49, 50, 358
traverse recursive function . 47
traverser constructor function prototypes 15
traverser manipulator function prototypes 16
traverser structure . 51
TRB functions . 210
TRB item deletion function 214
TRB item deletion function, without stack 393
TRB item insertion function 210
TRB item insertion function, without stack . . . 390
TRB node structure . 209
trb-test.c . 221
trb.c . 209
trb.h . 209
trb color enumeration . 209
trb delete function . 214, 393
TRB_H macro . 209
trb node structure . 210
trb probe function . 210, 390
trb tag enumeration . 209
tree to vine function 72, 182, 243

U
uniform binary search of ordered array 342
update balance factors after AVL insertion 114
update balance factors after AVL insertion, with

bitmasks . 376
update balance factors after PAVL insertion . . 296
update balance factors and rebalance after AVL

deletion . 125
update balance factors and rebalance after PAVL

deletion . 300
update balance factors and rebalance after RTAVL

deletion . 256
update balance factors and rebalance after TAVL

deletion . 199
update balance factors and rebalance after TAVL

deletion, with stack . 388
update parent pointers function 290
update y ’s balance factor after left-side AVL

deletion . 127

420 GNU libavl 2.0.1

update y ’s balance factor after right-side AVL
deletion . 129

update parents function . 290
usage function . 326, 348, 351
usage printer for search test program 348

V
verify AVL node balance factor 136
verify binary search tree ordering 89
verify PBST node parent pointers 292
verify RB node color . 161
verify RB node rule 1 compliance 161
verify RB node rule 2 compliance 161
verify RTRB node rule 1 compliance 276

verify TRB node rule 1 compliance 223
verify tree function 88, 137, 161, 188
vine to balanced BST function 75
vine to balanced PBST function 289
vine to balanced PBST function, with parent

updates . 401
vine to tree function 184, 289, 401

W
walk function . 47, 358

X
xmalloc function . 103

